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Abstract

I investigate how the portfolio of products carried by retailers in-

fluences negotiated wholesale prices and, ultimately, retail prices and

consumer welfare. To this end, I develop and estimate a model in

which manufacturers and retailers bargain over wholesale prices. I

use the estimated model to perform counterfactual exercises in which

(i) all products of a given manufacturer (including private label prod-

ucts) are excluded from a retailer’s portfolio, (ii) all products of a

given manufacturer become private label products and (iii) two man-

ufacturers merge. I compute changes in wholesale prices, retail prices

and consumer surplus. Focusing on one retail chain, I find small in-

direct effects on prices: excluding a manufacturer’s products leads to

only a small increase in other wholesale prices and assuming branded

products become private labels decreases other wholesale prices only

slightly. However, welfare effects can be large because of reduced

product variety and lower prices of the new private label products.

Mergers can lead to large increases in wholesale and retail prices,

but can also lead to price decreases, depending on the manufactur-

ers involved. A direct consequence is that mergers can be harmful

or beneficial to consumers: changes in consumer surplus range from

-14.06% to 17.90%.
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1 Introduction

Consumer goods are a large share of the American economy. In 2016, the
food, beverages and tobacco products sector alone accounted for $283.7
billion of the country’s GDP1. In the past two decades, much has been
learned about these industries, from the sources of market power - see
Nevo (2001) - to the effects of mergers - see Nevo (2000) and Miller and
Weinberg (2017). However, much less is known about the interaction be-
tween manufacturers and retailers and its impact on prices and consumer
welfare. I partially fill this gap by considering how the portfolio of prod-
ucts carried by retailers affects the wholesale prices they negotiate with
manufacturers, which in turn affect retail prices and consumer welfare.

Specifically, I consider the effects of private label products and the up-
stream market structure. Intuititively, if a retailer sells private label prod-
ucts that are well liked by its customers, this retailer is in a better posi-
tion when negotiating with the manufacturers of the national brands. This
logic extends: if a retailer has a relationship with one manufacturer, this
retailer is in a better bargaining position when negotiating with another
manufacturer. Moreover, the nature of retailers’ relationships with differ-
ent manufacturers might be different, implying different levels of whole-
sale mark-ups across manufacturers. My objective is to empirically evalu-
ate how this price negotiation mechanism impacts wholesale prices, retail
prices and consumer welfare.

To tackle the questions outlined above, I develop and estimate a model
of wholesale price negotiation between retailers and manufacturers. Hav-
ing estimated the model, I then conduct a series of counterfactual exercises
that address the questions above. The counterfactual exercises involve
solving the model under the estimated parameter values and different up-
stream ownership structures2.

1The figure for the entire non-durables sector is $1,005.1B. See https://
www.bea.gov/iTable/iTable.cfm?ReqID=51&step=1#reqid=51&step=
51&isuri=1&5114=a&5102=1.

2In this paper, when I refer to “upstream ownership structure”, I mean which manu-
facturers produce which goods, including private label products. For example, one structure
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The model has two stages. In the first stage, every retail chain - which
consist of many stores - negotiates with multiple manufacturers over whole-
sale prices. Given the wholesale prices agreed upon with each manufac-
turer, each store then sets its own prices to maximize profits. It is assumed
that every store is a local monopolist, so that competition between stores
is assumed away. The wholesale prices are assumed to be the outcome of a
Nash-in-Nash equilibrium between the retail chain and the multiple man-
ufacturers the chain negotiates with, taking as given the fact that stores
price optimally. Given the sequential nature of this game, I refer to an
equilibrium of the model as a subgame perfect Nash-in-Nash equilibrium.

The model is estimated using the IRI Academic Dataset3. It includes
price and quantity information for consumer goods in 30 categories at the
week-store-product(UPC) level. The data spans 50 different geographic
regions, includes information on product characteristics and all stores are
linked to the chains they belong to, which are anonymized. I focus on one
category, namely peanut butter. I estimate demand at the chain-region
level and, using the demand estimates and the store pricing assumption, I
obtain stores’ marginal costs. From stores’ marginal costs I derive whole-
sale prices at the chain-product level. These wholesale prices are then
treated as data in the estimation of the bargaining part of the model.

I estimate the bargaining part of the model by GMM. Specifically, I
show that the bargaining model admits an inversion, which allows me to
solve for manufacturers’ marginal costs. Together with a model for these
costs, this allows me to solve for the econometric error term as a function
of (constructed) data and parameters. The bargaining and marginal cost
parameters can then be estimated using appropriate orthogonality restric-
tions. The main identifying assumption is that manufacturers’ marginal
cost shocks are uncorrelated across different retailers.

The estimated model is then used to conduct counterfactual exercises.
In these exercises I solve for subgame perfect Nash-in-Nash equilibria

that will be considered is that in which the private label products seen in the data are ac-
tually manufactured and sold by one of the manufacturers of national brands.

3For a description of the original release of these data, see Bronnenberg, Kruger, and
Mela (2008)
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under different assumptions on retailers’ product portfolios and the up-
stream ownership structure. The goal is to understand the effect of these
different assumptions on equilibrium wholesale prices, retail prices and
consumer surplus. I focus on one chain4 and consider three types of coun-
terfactual exercises. In the first set of counterfactuals, I consider the sce-
nario in which all the products of a given manufacturer, including private
label products, are simply eliminated from the chain’s product portfolio.
In the second set of counterfactuals, I consider the situation in which all
the products of a given manufacturer become private label products. Fi-
nally, I consider upstream mergers (including the case in which private
label products are instead sold by one of the manufacturers).

I find that indirect equilibrium effects are small. For example, elimi-
nating private label products induces only a small increase in equilibrium
wholesale prices of branded products. Assuming all products of a given
manufacturer become private label products also induces only a small
decrease in the wholesale prices of the products of other manufacturers.
Nevertheless, prices of goods produced by one of the manufacturers in-
volved in the counterfactual can change substantially. These prices can
increase or decrease, depending on which manufacturers are considered.
As a consequence, mergers can be harmful or beneficial to consumers. As-
suming products of a given manufacturer become private label products
can generate large increases in consumer surplus: even though the indirect
effects on the wholesale prices of other manufacturers is small, consumers
benefit greatly from the lower prices.

This paper relates to two connected strands of the literature in empiri-
cal Industrial Organization. First, it relates to work studying vertical rela-
tionshps in retail markets, most notably Villas-Boas (2007) and Draganska,
Klapper, and Villas-Boas (2010). Both of these papers try to learn about as-
pects of vertical relationships between manufacturers and retailers with-
out observing data on wholesale price, much like the present paper. Villas-
Boas (2007) considers the implications of 6 non-nested models of verti-

4Future versions of this paper will perform the counterfactuals for all chains in the
data.
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cal relationships and tests which model is most consistent with the avail-
able data. Draganska et al. (2010) instead consider a model of bargaining
between retailers and manufacturers to study how profits in the vertical
chain are distributed between manufacturers and retailers.

Second, this paper is connected to the recent literature on the struc-
tural estimation of bargaining models, in particular models employing the
Nash-in-Nash solution concept based on Horn and Wolinsky (1988). The
first paper to accomplish estimation of a Nash-in-Nash bargaining model
was Crawford and Yurukoglu (2012). Other important contributions to
this literature are Gowrisankaran, Nevo, and Town (2015), Grennan (2013),
Crawford, Lee, Whinston, and Yurukoglu (2015) and Ho and Lee (2017b).
A microfoundation for the Nash-in-Nash solution concept was recently
provided by Collard-Wexler, Gowrisankaran, and Lee (2014). Another im-
portant contribution to the literature on the strucural estimation of bar-
gaining models is Ho and Lee (2017a), who endogenize the network of
relationships, an aspect of the data that all the papers cited above take as
given, as does the present paper. It should be noted that Draganska et al.
(2010) is another paper that estimates a bargaining model, but there are
relevant differences, which are discussed below, between their approach
and the Nash-in-Nash approach.

This paper complements the literatures above in a number of ways.
As Draganska et al. (2010) note, a model in which wholesale prices are
determined via Nash bargaining partially generalizes Villas-Boas (2007),
as it nests some of the models considered in the latter paper5. However,
(Draganska et al., 2010) doesn’t have a theory for the simultaneous deter-
mination of wholesale prices and their model of bilateral negotiations is in-
consistent with retailer profit maximization6. By fully specifying a model
of simultaneous determination of wholesale prices, this paper circumvents

5To the extent that bargaining parameters are allowed to vary across manufacturers,
retailers or both, a Nash bargaining model generalizes the approach in Villas-Boas (2007)
in another direction: the relationship between a retailer and different manufacturers can
exhibit varying degrees of inefficiency, something that is not allowed for in Villas-Boas
(2007)

6As they argue themselves.
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that difficulty and is able to embed retailer profit maximization into the
vertical relationship model7. Moreover, by fully specifying how wholesale
prices are determined, I’m able to compute equilibria under counterfactual
assumptions.

This paper applies the tools of empirical Nash-in-Nash bargaining mod-
els to study retailer-manufacturer interactions8. It also extends these tools.
I show that the bargaining model introduced in this paper, featuring down-
stream profit maximization, has an inversion. This enables me to solve for
manufacturer marginal costs, which in turn allows me to estimate bargain-
ing and manufacturer marginal cost parameters by GMM, without solving
the model. This extends the econometric approach of Gowrisankaran et al.
(2015) to the case in which there is downstream profit maximization9.

The rest of this paper proceeds as follows. Section 2 describes the
dataset and provides some reduced form analysis; section 3 introduces
the model and provides useful theoretical results; section 4 discusses the
estimation of the model; section 5 performs the counterfactual exercises
and section 6 concludes.

7At the cost of assuming away retailer competition. For more on this and for a more
thorough comparison of the model introduced in this paper and Draganska et al. (2010),
see Section 3.

8Other papers that study retailer-manufacturer relationships and estimate bargaining
models are, as already noted, Draganska et al. (2010) and Meza and Sudhir (2010), who
study the question of whether private label products incrase retailer bargaining power.

9Constructing and estimating a coherent equilibrium model of the determination of
wholesale prices while allowing for downstream price competition seems to be more chal-
lenging. To see why, consider that setting and suppose a manufacturer m increases the
wholesale price that chain h pays for good j. Chain h’s stores will tend to increase the
price of good j. This will shift demand to competing retailers −h and will thus increase
manufacturer m’s profits from retailers −h. A coherent model of vertical relationships
with downstream price competition thus needs to consider this demand shifting effect.
Interestingly, the predictions of such a model relative to a model in which stores are mo-
nopolists is ambiguous: downstream price competition tends to drive prices down, but
now the prices a manufacturer charges different retailers for the same good are strategic
complements, which tends to drive prices up.
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2 Data

The data used in this paper comes from the IRI Academic Database. For
a description of the original release of this data, see Bronnenberg et al.
(2008). IRI provides information on prices and quantities at the store-
week-UPC level, for 30 product categories and 12 years. The data also
provides information on the coarse geographic location10 of each store and
to which (anonymized) chain each store belongs to. I focus on one year of
data, 2004. Tables 1 and 2 have some motivating evidence for the analy-
sis that follows. Table 1 shows some descriptive statistics for 12 of the 30
categories and table 2 shows results of reduced form analysis for the same
12 categories. In table 1, the second column shows the number of manu-
facturers in each product category; the third column shows the number of
products (UPCs) in each category; the fourth column shows the share of
private label products11.

Table 1: Product Portfolios and Prices

Category n manuf n prods share sb

Blades 17 563 32.5
Cleaning 111 723 15.77
Diapers 14 536 24.44

Facial Tissue 33 346 18.5
Hotdog 155 1100 11.64

Mayonnaise 67 411 25.55
Mustard/Ketchup 242 1101 18.8

Paper Towel 16 540 57.41
Peanut Butter 38 294 24.15

Razors 7 115 7.83
Sugar Substitutes 34 163 26.99

Toothbrush 64 757 11.89

Table 2 is slightly more involved. The second column shows how much

10There are 50 values for this location variable and these values are not always at the
same geographic level. Most locations are cities but (i) there are cities of varying size, (ii)
Two of the locations are regions (New England and West Texas/New Mexico) and (iii)
two locations are states (Mississipi and South Carolina).

11The number of private label products in the data divided by the total number of
products
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of the price variation is across chains. Specifically, I estimate a regression of
prices on UPC dummies and a regression of prices on dummies for (UPC,
Chain) pairs; the first column then reports the difference between the R2

of the second regression and the R2 of the first regression, for each cate-
gory12. For some product categories, e.g. diapers and paper towels, varia-
tion across chains explains only a small fraction of total price variation; for
other product categories, e.g. cleaning products, mustard/ketchup and
toothbrush, variation across chains accounts for a non-negligible fraction
of total price variation.

Table 2: Product Portfolios and Prices

Category price var chain sb effect sb portf effect competition effect

Blades 2.39 -1.28 -14.1 -0.83
Cleaning 7.96 -4.71 -13.74 -0.52
Diapers 1.78 -4.63 -8.27 1.05

Facial Tissue 3.12 15.9 19.26 0.63
Hotdog 4.52 15.38 6.86 0.55

Mayonnaise 5.85 4.48 -8.8 0.25
Mustard/Ketchup 7.95 4.73 4.17 -0.23

Paper Towel 2.35 -0.15 9.66 2.92
Peanut Butter 6.41 15.1 20.69 -1.9

Razors 7.59 6.78 2.78 -1.43
Sugar Substitutes 7.37 -13.1 -30.14 -3.08

Toothbrush 11.08 8.81 6.68 -1.05

In the third column of table 2, I evaluate the correlation between prices
and the prevalence of store brand products. Specifically, for each category
I run regressions of the form

ln(pjst) = γj + βSPLst + εjst (1)

where pjst is the price of product j in store s in week t, γj is a prod-
uct fixed effect and SPLst in the share of private label products sold in
store s and week t, defined by the total quantity of private label products

12The R2 for these regressions is HIGH, BUT GIVE ACTUAL NUMBERS. This implies
that there’s little price variation across stores of a given chain, consistent with Adams and
Williams (2017) and DellaVigna and Gentzkow (2017).
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sold in the store divided by the total quantity of products sold. I run these
regressions on randomly drawn subsamples of the data with 100,000 ob-
servations, restricted to branded products.

The most interesting feature of the results is that five out of the twelve
coefficients are negative. Note that equation (1) relates the price of branded
products and the share of private label products. As long as branded prod-
ucts and private label products are substitutes, the correlation between
these two variables should be negative, mechanically. Moreover, taking
optimal pricing into account also suggests a positive correlation between
these variables: suppose, say, that consumers’ perceptions about a re-
tailer’s private label products improves; the retailer should then increase
the price of the private label products and, as prices are strategic comple-
ments because of substitutability, the retailer should also increase the price
of the branded goods. The fourth column of table 2 shows the results of
a similar exercise. I run similar regressions, but instead of using the share
of private label products in sales, I use the share of private label products
in the store’s portfolio, i.e., the number of private label products in store s
in week t divided by the total number of products. The signal of the coef-
ficient of interest changes for two product categories, but qualitatively the
results are similar.

Finally, in the last column of 2, I evaluate the correlation between prices
and the number of manufacturers a retailer negotiates with. Specifically, I
run the following regressions:

ln(pjst) = γj + βmst + εjst (2)

where mst is the number of manufacturers that have some of their prod-
ucts being sold in store s in week t. I also run these regressions on ran-
domly drawn subsamples of size 100,000 and restricting attention to branded
products. Seven out of the 12 estimated coefficients are negative, which
suggests that retailers that negotiate with more suppliers obtain better
wholesale prices.

In summary, tables 1 and 2 show that (i) for some categories there’s
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non-negligible price variation across chains and (ii) in some cases retail
prices are lower if retailers’ private label products are more prevalent or if
they deal with more suppliers. These facts could possibly be explained by
different retailers facing different demand and competitive environments.
For example, it might be the case that private label products are mostly
introduced as cheap alternatives for national brands by chains that tend to
locate in poorer neighborhoods, and thus have lower demand for national
brands, driving the negative correlations in columns 3 and 4 of table 2. It
is also the case that retailers compete both in prices and product offerings,
which could help explain the negative correlations in the last column of
table 2.

In this paper I’ll consider another possible mechanism: store brand
products and relationships with other suppliers put retailers in a better po-
sition when bargaining with manufacturers. Being in a better bargaining
position, retailers will obtain better wholesale prices, which might trans-
late into lower retail prices, depending on the demand function faced by
retailers. To empirically evaluate these mechanisms, I’ll estimate a model
of wholesale price negotiation, which is described in detail in section 3.

The model will be estimated on data for peanut butter13 for the year
2004. I focus on stores that appear in the data for at least 26 weeks. Condi-
tional on this criterion, I restrict the sample to chains for which I observe
at least 5 stores. Finally, conditional on these two criteria, for each store
I keep only products that account for at least 5% of total revenues from
peanut butter in that store in some week of the year. In the model intro-
duced below, stores are assumed to be local monopolists and every pair
(store, week) is treated as a market. The size of the market is assumed to
be 1.5 times the maximum total number of units of peanut butter sold in a
given store, where the maximum is taken over the weeks in the data.

The selection criteria above leave me with 1,330,205 observations at
the store-week-UPC level. There are 22 manufacturers in the data and
199 different products, of which 30.15% are private label products. The

13Perhaps not the best choice in light of table 2. A future iteration of this paper will
apply the methodology below to a different product category.
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Figure 1: Distribution of the number of stores across chains

observations are distributed across all the 50 geographic locations in the
data and across 86 chains. These chains vary considerably in size14 (see
figure 1), number of manufacturers they negotiate with (see figure 2) and
the market share of private label products (see figure 3).

3 Model

In section 3.1, I introduce the main components of the model, leaving de-
mand functions unspecified. In section 3.2, I complete the description of
the model by specifying the discrete choice problems that consumers face,
from which stores’ demand functions are derived.

14Figure 1 plots the number of stores in the data. The data need not be exhaustive, but
assuming IRI’s sampling of stores across chains is similar, this suggests that these retail
chains do differ in size. In the model and empirical implementation, though, the number
of stores in the data will be taken to reflect reality: chains’ profits are defined to be the
sum of stores’ profits.

11



0

10

20

4 6 8

Number of Suppliers

C
h

a
in

s

Number of Suppliers across Chains

Figure 2: Distribution of the number of suppliers across chains

0

3

6

9

0.0 0.2 0.4 0.6

Market Share of Private Label Products

C
h

a
in

s

Market Share of Private Label Products across Chains

Figure 3: Distribution of the share of private label products across chains

12



3.1 Model: Retailer Profit Maximization and Negotiated

Wholesale Prices

Retail chains are indexed by h. Chain h owns stores s = 1, . . . , Sh. The
industry is endowed with a set of products, denoted by15 J . Products
are indexed by j = 1, . . . , J , where J := |J |. A store s carries an exoge-
nously given portfolio of products J s ⊆ J and faces a demand function
Ds : RJs → RJs , mapping that store’s prices into quantities demanded by
consumers. Note that by specifying the demand of store s as a function
of that store’s prices only, I’m assuming there’s no competition between
stores, i.e., stores are assumed to be local monopolists. Given marginal
costs cs, stores set prices to solve

max
p

∑
j∈J s

(pj − csj)Ds
j(p)

Let ps(cs) denote the solution to this problem. In section 3.3 I show that
the solution to this problem is indeed unique given the demand functions
I specify.

Let Jh := ∪Sh
s=1J s be the set of products sold by chain h. Each such

product is either a private label product or a branded product, i.e., a prod-
uct produced by some manufacturer m. I assume that chains are perfectly
vertically integrated with respect to their private label products16.

Let Jh,m be the set of products sold by chain h and manufactured by
m. Chain h bargains with manufacturer m over the wholesale prices of
these products, wh,m = (wh,j)j∈Jh,m . Denote the vector of wholesale prices
of the branded products sold by chain h by wh. I assume that, given wh,
the marginal costs of the stores owned by chain h are given by

csj =

kh,j + τ s + ηsj , if j ∈ J s
PL

wh,j + τ s + ηsj , if j /∈ J s
PL

(3)

15Empirically, J corresponds to the set of all products seen in the data.
16An alternative assumption that is also empirically feasible is that all store brand prod-

ucts are produced by a single manufacturer.
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where J s
PL denotes the set of private label products sold by store s and kh,j

is the chain’s marginal cost of producing good j.
Chain and manufacturers bargain over wholesale prices wh,m before the

shocks to the stores’ marginal costs are observed. After wholesale prices
are agreed upon, cost shocks to the stores realize and the stores set prices
ps(cs). The chain then purchases Ds

j(p
s(cs)) at wh,j and sells Ds

j(p
s(cs)) at

price psj(cs) - for each store s. Hence, the value for the chain of reaching an
agreement with manufacturer m at wholesale prices ŵm, holding fixed the
wholesale prices agreed upon with other manufacturers, w−m, is given by

Vh(ŵm, w−m;Jh) = Eη

[
Sh∑
s=1

∑
j∈J s

(psj(c̃
s(ŵm, w−m))− c̃sj(ŵm, w−m))×

× Ds
j(p

s(c̃s(ŵm, w−m)))

]

If chain h and manufacturer m do not reach an agreement, the chain
caeses to carry all of that manufacturers products. Each store then faces an
alternative demand D̄m,s

j : R|J s\Jh,m| → R|J s\Jh,m|, where the superscript
m indicates which negotiation failed. In case of disagreement, the chain
obtains

Vh(w−m;Jh \ Jh,m) = Eη
[ Sh∑
s=1

∑
j∈J s\Jh,m

(psj(c̃
s(w−m))− c̃sj(w−m))×

× D̄m,s
j (ps(c̃s(w−m)))

]
If chain h and manufacturer m do reach an agreement, the value of the

relationship for the manufacturer is

Vm,h(ŵm, w−m) = Eη

 Sh∑
s=1

∑
j∈J s∩Jh,m

(ŵj − cmj )Ds
j(p

s(c̃s(ŵm, w−m)))


where cmj is the manufacturer’s (constant) marginal cost of producing good
j. Finally, if an agreement is not reached, the value of the relationship for

14



the manufacturer is zero17. I can now define the solution concept for this
game.

Definition 1. A vector w ∈ R|Jh\∪sJ s
PL| is a subgame perfect Nash-in-Nash

equilibrium (SPNiN) wholesale price vector if, for every manufacturerm
such that Jh,m 6= ∅, the vector wm ∈ R|Jh,m| solves

max
ŵm

Vm,h(ŵm, w−m)bm,h × (Vh(ŵm, w−m;Jh)− Vh(w−m;Jh \ Jh,m))bh,m (4)

where bm,h is the manufacturer’s bargaining power when bargaining with
chain h and bh,m is the chain’s bargaining power when bargaining with
manufacturer m18.

3.2 Model: Demand

Each store faces a mass M s of consumers that either buy a single product
at the store or don’t buy anything. If consumer i buys product j in store19

s, which is owned by chain h and located in the geographic region l, she
enjoys conditional indirect utility

uijs = γjhl + φs + αh,lpjs + ψh,lajs + ξjs + εijs

where γjhl is a product fixed effect, φs is a store fixed effect, pjs is the price
of good j in store s, ajs is an advertisement dummy, ξjs are product charac-
teristics that are unobserved by the econometrician and εijs are preference
shocks.

I’ll assume, as is standard, that the shocks εijs are iid with a Type 1

17The assumption underlying the way the value for the manufacturer in both contigen-
cies (agreement or not) is specified is that the bargaining problems that a manufacturer
faces with different chains are entirely independent of one another. This is a common
assumption in the empirical bargaining literature. It should be noted that it requires (i)
absence of downstream price competition and (ii) constant marginal costs for the manu-
facturer.

18Without loss of generality, I impose bh,m + bm,h = 1.
19Choosing in which store to purchase is not a choice in the model.
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Extreme Value distribution. Then the share of good j in store s is given by

σsj (p) =
exp(δj(pj))

1 +
∑

k∈J s exp(δk(pk))

where δk := γkhl + φs + αh,lpks + ψh,laks + ξks

Store s thus faces the demand function

Ds
j(p) = M sσsj (p)

The disagreement demand functions D̄m,s are derived from the discrete
choice model in the same way.

3.3 Theoretical Results

This section establishes two results that are used in the subsequent analy-
sis. First, I provide a full characterization of the solution - which turns out
to be unique - to a monopolist’s profit maximization problem under logit
demand, as in the case of stores in the model introduced above.

Proposition 1. Suppose a monopolist faces a demand function D : RJ →
RJ given by

Dj = Mσj(p) = M
exp(δj(pj))

1 +
∑J

k=1 exp(δk(pk))

where δk(pk) = γk + αpk and α < 0. Then

(i) There exists a unique solution p∗ to the monopolist’s profit maximiza-
tion problem.

(ii) The solution p∗ exhibits constant mark-ups, i.e., there exists a µ > 0

such that
p∗j − cj = µ, for all j = 1, . . . , J

(iii) The optimal mark-up µ is given by the unique solution to

1 + αµσ0(c+ µ) = 0 (5)
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where σ0(p) = 1/ (1 +
∑

k exp(δk(pk))) is the share of the outside good,
c = (c1, . . . , cj)

′ is the vector of marginal costs and c+ µ means that µ
is added to every coordinate of c.

(iv) p∗ is a continuously differentiable function of c ∈ RJ and its deriva-
tives are given by

∂p∗j
∂ck

=

1 + ∂µ∗

∂cj
(c) if k = j

∂µ∗

∂ck
(c) k 6= j

where
∂µ∗

∂ck
(c) =

αµ∗(c)σk(c+ µ∗(c))

1− αµ∗(c)(1− σ0(c+ µ∗(c)))

Proof. See appendix A. ♠

The result above is of independent interest, because logit demands are
used widely in industrial organization. Existence of a unique solution and
the constant mark-up property are private cases of results in Nocke and
Schutz (2018), but I provide independent proofs of those facts. The anal-
ysis of SPNiN equilibria that follows assumes that retail prices depend
smoothly on wholesale prices - see Proposition 2. Part (iv) of Proposition
1 establishes that fact and characterizes the relevant derivatives. This ex-
plicit characterization makes computation considerably more efficient: the
only step that has to be done numerically is the solution of equation (5),
which is a very well behaved equation (see the proof of Proposition 1) and
thus easy to solve numerically.

The next result, which characterizes SPNiN wholesale price vectors,
is used in the estimation of bargaining and manufacturer marginal cost
parameters, which is tackled in section 4.3.

Proposition 2. Let Jh,B := Jh \ ∪sJ s
PL be the set of branded products sold

by chain h. Suppose wh ∈ R|Jh,B | is a subgame perfect Nash-in-Nash equi-
librium wholesale price vector. Let ch ∈ R|Jh,B | be the vector of manufac-
turers’ marginal costs of producing the goods sold by chain h and let m(j)
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be the manufacturer of product j. Then the vector of wholesale markups,
wh − ch, satisfies(

Sh∑
s=1

Ωs(w) + Λs(w)

)
(wh − ch) = −

Sh∑
s=1

Eη[Ds,h(ps(c̃(w)))]

where Ds,h(p) ∈ R|Jh,B |

Ds,h
j (p) =

Ds
j(p) if j ∈ J s

0 otherwise

,the matrices Ωs(w),Λs(w) ∈ R|Jh,B |×|Jh,B | are given by

Ωs(w)j,k =

Eη
[
∇Ds

k(p
s(c̃s(w)))′ ∂p

s

∂cj
(c̃s(w))

]
if j ∈ J s, k ∈ J s ∩ Jh,m(j)

0 otherwise

and

Λs(w)j,k =

−
bh,m

bm,hSh(w)

(∑Sh

s=1 Eη[D
s,h
j (ps(c̃(w)))]

)
Eη[Ds

k(p
s(c̃s(w)))] if k ∈ J s ∩ Jh,m(j)

0 otherwise

and Sh(w) = Vh(w;Jh)− Vh(w−m;Jh \ Jh,m)

Proof. See appendix A. ♠

The usefulness of Proposition 2 stems from the fact that it allows me to
solve for manufacturers’ marginal costs. This, together with a model for
those costs, allows me to estimate bargaining and manufacturer marginal
cost parameters without solving the model. See section 4.3 for details.

3.4 Comments about the model

The model introduced above does not contain a theory of which manufacturer-
retailer relationships occur in equilibrium. The model above assumes, as
does almost all of the empirical bargaining literature, that these relation-
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ships are exogenously given. The first attempts at relaxing this assumption
are very recent - see Ho and Lee (2017a) and I don’t incorporate endoge-
nous supply chain relationships as they’re not the focus of this paper. The
model also takes as given the product variety at each store. It is possi-
ble to imagine a model in which the store’s profit maximization problem
is both over which products to offer - choosing a subset of the products
procured by the chain - and prices. For the choice of products to be non-
trivial, a constraint - arising, for example, from finite physical space - must
be imposed, otherwise the solution with respect to the product variety is
to offer all available products. Since I don’t have data to estimate a model
of optimal product variety, I take the product offerings at each store as
exogenous.

I also assume, in line with the empirical bargaining literature, that if
disagreement between manufacturer m and chain h occurs, w−m is held
fixed. A perhaps natural alternative assumption is that the wholesale
prices that occur under disagreement are themselves the outcome of a
Nash-in-Nash bargaining game. Computing equilibria for such a model
would require the calculation of a large number of Nash-in-Nash equilib-
ria, which might not be computationally feasible. That being said, Propo-
sition 2 goes through without change if the disagreement payoff for the
chain is independent of ŵm, which would be true in the alternative model
just suggested.

It is also worthwhile to compare the model introduced above to the
model in Draganska et al. (2010). There are several differences. First, my
model allows for retailer profit maximization, though under the simplify-
ing assumption of no substitution across stores. Draganska et al. (2010)
argue that a model of independent negotiations (as my model and theirs)
is inconsistent with optimal pricing by retailers, which is true in a model
in which substitution across retailers is allowed for, like theirs. Retailer
profit maximization can, however, be accomodated in a model in which
stores are local monopolists: in that case an incrase in wjh only generates
retail price changes for retailer h; there are no equilibrium effects on the
prices of other retailers, and thus no change in the manufacturer’s value
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of other negotiations.
Draganska et al. (2010) also assume that manufacturers and retailers

bargain separately over each product. Thus, disagreement payoffs in their
model involve the elimination of only one product. I assume, instead, that
manufacturers and retailers negotiate over the wholesale prices of all the
goods produced by that manufacturer. I believe this is a more realistic
assumption. This assumption also captures the intuition that if a retailer
relies heavily on a given manufacturer, that manufacturer has consider-
able leverage over the retailer and can negotiate larger wholesale prices, a
mechanism that is not present in their model (except at the product level).
Another difference is that they implicitly assume that negotiations over
wholesale prices occur every period (weekly). In my empirical implemen-
tation, I instead assume that negotiations over wholesale prices occur once
and those wholesale prices are fixed for the duration of the data (1 year).
Details are given in the next section.

Finally, Draganska et al. (2010) don’t have a theory for the joint deter-
mination of wholesale prices20. This precludes computation of wholesale
prices under alternative scenarios - their counterfactuals analysis is based
on a parametrization of bargaining parameters. The model presented here,
instead, is able to generate counterfactual wholesale and retail prices, by
adopting the Nash-in-Nash solution concept. I should note, however, that
even though their model is not of the Nash-in-Nash type, there are simi-
larities in the econometric methodology of both papers.

4 Econometrics

In this section I present the details of how the model is estimated. I start
in subsection 4.1 with demand estimation; subsection 4.2 gives the details
of how wholesale prices are constructed; subsection 4.3 goes over the esti-
mation of bargaining parameters and manufacturers’ cost parameters.

20In particular, their model is not of the Nash-in-Nash type.
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4.1 Demand Estimation

The conditional indirect utility that consumer i derives from product j
when buying it at store s was assumed to be given by

uijs = γjhl + φs + αh,lpjs + ψh,lajs + ξjs + εijs

where the εijs follow independent Type 1 Extreme Value distributions21.
To this logit model of demand, the simplest instance of the inversion of
S. T. Berry (1994) can be applied, yielding

ln(σsj )− ln(σs0) = γjhl + φs + αh,lpjs + ψh,lajs + ξjs (6)

As usual, endogeneity of pjs is a concern: if the retailer or the manu-
facturer has some information about ξjs then prices will be correlated with
ξjs. I’d thus like to have an instrument for prices. Because of the nature of
the questions tackled in this paper, which all ask how chain characteristics
explain price variation, I’m interested in estimating demand at the chain
level. For this reason, I won’t aggregate the data to, say, the geographic
location level.

Using the data at the retailer level introduces difficulties in the de-
mand estimation. The reason is that standard instruments - for example,
the average price of the product in other markets22, see Nevo (2001) and
Hausman (1996) - are not powerful to explain within-store price variation23.
The reason is that within a store, prices tend to decrease in sale periods
and then go back to their “normal level” - a pattern illustrated by figure 4
- but the variation in the price of the product in other markets comes from
upstream cost shocks, which are common across stores and retailers.

A common idea for generating instrumental variables for prices is find-

21See 3.2 for the definitions of the other terms.
22In my context, this would have to be adapted to the average price of the product in

other markets and in other chains, because wholesale prices are common across stores
that belong to the same chain.

23Aggregating across stores within a chain wouldn’t help much, because prices within
a chain are highly correlated, as discussed above. See also Adams and Williams (2017)
and DellaVigna and Gentzkow (2017).
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Figure 4: Price paths for two products (columns) in two different stores
(rows).

ing exogenous cost shifters. The model introduced above makes cost shocks
to the stores explicit. Cost shocks also enter store prices explicitly: stores
set their prices equal to ps(c̃s(wh, ηs)). Thus, if stores’ cost shocks ηs were
observed, they’d be an ideal instrument. We can use this intuition to con-
struct a GMM estimator based on the restriction that stores’ cost shocks
and unobservable demand factors at the store level are uncorrelated, i.e.,

E[ηsjξjs] = 0

Specifically, estimation proceeds as follows. First, I run ln(σsj ) − ln(σs0)

and pjs on product, store and advertisement dummies (see equation 6).
Let the resulting residuals be denoted ν̂sj and ρ̂sj , respectively. For a fixed
value of α, I invert the store’s first order conditions to obtain marginal
costs csj - note that this inversion depends only on α and the observed
market shares. Then, leveraging the marginal cost model (3), I run the
marginal costs implied by α on product and store dummies. Let the re-
sulting residuals be denoted η̂sj . The GMM estimate of α is the solution to
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the equation
ḡ(α) := N−1

∑
s,j,t

(ν̂sjt − αρ̂sjt)η̂sjt(α) = 0 (7)

where N is the relevant number of observations. Note that this approach
is reminiscent of S. Berry, Levinsohn, and Pakes (1995) in that it imposes
the equilibrium pricing equations when estimating demand. Standard
errors for this estimator can be computed using standard results for the
asymptotic distribution of extremum estimators, e.g. Newey and McFad-
den (1994). Once α has been estimated, the remaining demand coefficients
can be obtained by running a OLS regression of ln(σsj ) − ln(σs0) − α̂pjs on
the product, store and advertisement dummies.

I estimate demand separately for each (chain, location) pair in the data,
for a total of 206 demands, using OLS and the GMM estimator above. Un-
der the OLS estimator, 4.23% of the own price elasticities are less than one
in absolute value. For the GMM estimator, this figure is 0.03%. The me-
dian of the distribution of own price elasticities is -2.83 for the OLS estima-
tor and -5.02 for the GMM estimator. Because I’m modelling the demand
for peanut butter within a store, the GMM results seem to be more cred-
ible than the OLS results. The larger elasticies under the GMM estimator
translate into patterns for marginal costs via the inversion of stores’ first
order conditions. Under the OLS estimator, 13.7% of the marginal costs
are estimated to be negative, whereas that figure is equal to 1.24% for the
GMM estimator. Of course, these results are the consequence of larger (in
absolute value) coefficients obtained with the GMM estimator. Figure 5
plots the distribution of the estimates obtained under each method.

4.2 Construction of Wholesale Prices

Stores choose prices to solve

max
p

∑
j∈J s

(pj − csj)Ds
j(p)
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Figure 5: Distribution of price coefficient estimates under OLS and GMM.

The first order conditions can be solved for stores’ marginal costs:

cs = ps + (Jσs(ps)′)−1σs(ps) (8)

where σs is the share function for store s, given by

σsj (p) =
exp(δsj )

1 +
∑

k exp(δsj )

and Jσs(p) is its Jacobian with respect to prices.
From equation (8) I can thus obtain the marginal costs as a function

of estimated demand parameters and data24. Having recovered stores’
marginal costs, I estimate the store marginal cost model (3). Specifically,
for each chain I run the stores’ marginal costs obtained via equation (8)
on product and store dummies. The coefficient estimates on the product

24For the logit model things are even simpler. For the share function above we have

∂σs
j

∂pk
=

{
ασs

j (p)(1− σs
j (p)) if k = j

−ασs
j (p)σ

s
k(p)

Marginal costs can thus be recovered as a function of α and data - the remaining demand
parameters are not needed.
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dummies are the estimated wholesale prices. For the purpose of estimat-
ing the bargaining part of the model, these wholesale prices are treated as
data. I obtain 3250 observations of wholesale prices at the (Chain,UPC)
level.

The following tables provide some reduced form analysis of wholesale
prices obtained following the procedure above and their relation to some
characteristics of retailers’ product portfolios. First, table 3 shows that re-
tailers are indeed able to procure private label products at cheaper prices.
The table shows regressions of wholesale prices on a private label dummy.
The second column includes chain fixed effects, resulting in no change on
the estimated coefficient. The third column controls for weight, and the
estimated coefficient now is substantially larger in absolute value, which
shows that private label products tend to be heavier than branded prod-
ucts. The result in column (3) shows that private label products are on
average 33.23% cheaper than a branded product of the same weight25.

Table 3: Do Stores Face Lower Marginal Costs for Store Brand Products?

Dependent variable:

ln(wjh) ln(wjh) ln(wjh)

(1) (2) (3)

Weight 0.031∗∗∗

(0.0004)

Private Label Dummy −0.241∗∗∗ −0.241∗∗∗ −0.404∗∗∗

(0.026) (0.026) (0.014)

Chain FE No Yes Yes
Observations 3,250 3,250 3,250
R2 0.026 0.100 0.737
Adjusted R2 0.025 0.076 0.729
Residual Std. Error 0.601 (df = 3248) 0.586 (df = 3163) 0.317 (df = 3162)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

251− e−0.404 = 0.3323.
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The value of private labels for retailers stems from the lower cost of
procuring these goods. Assuming they’re close substitutes for national
brands, retailers are able to obtain a larger mark-up on private labels while
pricing these products below the branded products, thus diverting de-
mand towards private labels. Alternatively, under constant mark-ups -
as implied by a logit model of demand as the one used in this paper26

- and assuming consumers perceive private label and branded products
to be of similar quality, the retailer obtains greater demand for the pri-
vate label product, thus generating larger profits from private label prod-
ucts than their national brand counterparts. This is also the mechanism
that makes private labels relevant for the determination of equilibrium
wholesale prices. The presence of private label products increases retail-
ers’ disagreement payoffs in the Nash bargaining problems, which tends
to reduce wholesale prices. This mechanism works for all products/man-
ufacturers, not only private labels, but the discussion above suggests it’s
most relevant for private label products. For the quantitication of these
mechanisms in counterfactual analyses, see section 5.

Table 4 shows regressions of the logarithm of wholesale prices of branded
products on different measures of the prevalence of private label products
in each chain. The first column uses the share of products sold in the year
that were private label products and the second column uses the share of
private label products in the retailer’s portfolio. Both regressions include
product fixed effects. The coefficient of interest in the first regression is
positive. This might suggest that the prevalence of store brand products
brings retailers no benefit in terms of better wholesale prices, but it can
be interpreted in the reverse direction: high wholesale prices of branded
products will lead to high retail prices, which in turn will imply higher
share of private label products. The second regression, on the other hand,
shows that retailers that carry a larger share of private label products in
their portfolios tend to obtain better wholesale prices. The measure of pri-
vate label prevalence used in the second regression doesn’t capture con-
sumers’ optimal purchase decisions. This is a double edged sword: on the

26See Proposition 1.
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Table 4: Private Label Produts and Wholesale Prices

Dependent variable:

ln(wjh) ln(wjh)

(1) (2)

Share of PL - Sales 0.155∗∗∗

(0.028)

Share of PL - Portfolio −0.225∗∗∗

(0.051)

Product FE Yes Yes
Observations 2,580 2,580
R2 0.905 0.905
Adjusted R2 0.899 0.899
Residual Std. Error (df = 2440) 0.175 0.176

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Estimation sample restricted to branded products.

one hand it shuts down the reverse causality present in the first regression,
but it also fails to capture the perceived quality of private label products
among consumers. Counterfactuals exercises conducted in section 5 ac-
count for both of these factors.

Finally, table 5 shows how the logarithm of wholesale prices corre-
lates with the number of products sold by a retailer and the number of
manufacturers the retailer negotiates with. The estimated coefficients are
small. The coefficient on the number of suppliers is positive, which sug-
gests that the increase in retailers’ disagreement payoffs coming from the
larger number of suppliers is not the dominating factor. Instead, the strate-
gic complementarity between wholesale prices of different manufacturers
seems to be the relevant factor, which might suggest that manufacturers
have more bargaining power in the vertical relationships studied here.
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Table 5: Products, Suppliers and Wholesale Prices

Dependent variable:

ln(wjh) ln(wjh) ln(wjh)

(1) (2) (3)

Number of Products −0.002∗∗∗ −0.003∗∗∗

(0.0004) (0.0005)

Number of Suppliers 0.016∗∗∗ 0.023∗∗∗

(0.003) (0.003)

Product FE Yes Yes Yes
Observations 2,580 2,580 2,580
R2 0.904 0.905 0.907
Adjusted R2 0.899 0.900 0.902
Residual Std. Error 0.176 (df = 2440) 0.175 (df = 2440) 0.174 (df = 2439)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Estimation sample restricted to branded products.

4.3 Estimation of Manufacturer Cost and Bargaining Pa-

rameters

The model introduced above allows bargaining parameters to vary both
across manufacturers and retailers. When estimating the model, I’ll allow
them to vary across manufacturers only. Moreover, there are three large
manufacturers in the data27 and many small manufacturers. I’ll assume
that all the small manufacturers have the same bargaining parameter. In
short, there are 4 bargaining parameters to be estimated.

Proposition 2 says that SPNiN wholesale prices for chain h, wh, satisfy(
Sh∑
s=1

Ωs(w) + Λs(w)

)
(wh − ch) = −

Sh∑
s=1

Eη[Ds,h(ps(c̃(w)))] (9)

Therefore, as long as the matrix on the left hand side of this equation is in-

27Conagra Foods Inc, Unilever and J M Smucker Co.
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vertible, I can solve for ch, the manufacturers’ marginal costs of producing
the goods sold by chain h.

It also turns out that the matrix on the left hand side of equation (9) is
block-diagonal, where the blocks correspond to the different manufactur-
ers that negotiate with chain h. This implies that the resulting marginal
costs depend only on the bargaining power of that manufacturer. There-
fore, I may write

cjh = wjh − µ(wh, bm(j)), j ∈ J \ Jh,PL, h = 1, . . . , H (10)

where µ is the mark-up term obtained by solving the system of linear equa-
tions given by equation (9), m(j) is the manufacturer that produces good
j and Jh,PL is the set of private label products sold by chain h.

Now suppose manufacturers’ marginal costs are given by

cjh = x′jhγ + νjh (11)

where xjh are observable characteristics of the product and the chain and
νjh is a shock. Specifically, I include in xjh manufacturer fixed effects, chain
fixed effects, the product’s weight, a dummy for reduced sugar products, a
dummy for more expensive production processes28, a dummy for reduced
sodium, a dummy for chunky or crunchy peanut butter and a dummy for
flavored products.

Putting equations (10) and (11) together, I can write

νjh(bm(j), γ, wh, xjh) = wjh − µ(wh, bm(j))− x′jhγ (12)

Estimation of manufacturers’ marginal cost parameters (γ) and bargaining
parameters (bm) can then be accomplished by GMM, based on the condi-
tional moment restriction

E[νjh|zjh] = 0

for appropriate variables zjh. Note that in equation (12), the marginal cost

28For example, natural, kosher and organic products.
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shocks νjh are written as a function of data and structural parameters.
However, the expression in the right hand side of that equation depends
on wh, which in turn depends on νjh. Therefore, to identify the bargain-
ing parameters bm, instruments generating exogenous variation in wh are
necessary.

4.3.1 Choice of Instruments and Identification

I use as as instruments zjh the following variables:

(i) the cost covariates xjh.

(ii) Product j’s expected demand at chain h, under the optimal retail
prices implied by the average wholesale price of product j in other
chains, interacted with manufacturer dummies.

(iii) Total expected demand for goods produced by the manufacturer of
product j, under the optimal retail prices implied by the average
wholesale price of product j in other chains, interacted with man-
ufacturer dummies.

(iv) Manufacturer mark-up for product j, as obtained from Proposition
2, computed under the average wholesale prices in other chains (for
all the products sold by chain h) and assuming bm = 1/2, interacted
with manufacturer dummies.

The cost covariates are all assumed to be exogenous with respect to
νjh. Note that the instruments in bullets (ii) to (iv) all use the average of
the wholesale prices in other chains, which depend on νjh′ , h′ 6= h. There-
fore, the main assumption underlying validity of these instruments, and
hence the main identifying assumption, is that E[νjhνjh′ ] = 0, i.e., that
manufacturers’ marginal cost shocks are uncorrelated across chains. This
seems like a reasonable assumption given that (i) negotiations occur only
once29 and (ii) the cost model includes a rich set of product characteris-

29In a model with repeated negotiations, E[νjhtνjh′t] = 0 would hardly be a compelling
assumption, but in that situation one might use the panel structure of the data to generate
alternative moment conditions.
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tics30 and manufacturer dummies. One situation in which this identifying
assumption would not hold is when two chains concentrate their stores
in a common location that is hard to access, making cjh larger for those
chains compared to all other chains.

Power comes from the fact that variables (ii)-(iv) are based on demand
factors. For example, if the customers of chain h perceive product j to
be of high quality, demand for that product will tend to be high and the
manufacturer, being aware of that, can charge larger wholesale prices. As
another example, the variable in (iv) predicts wholesale mark-ups assum-
ing bm = 1/2. This variable is correlated with actual wholesale mark-ups,
which mechanically influence wholesale prices.

The discussion above shows that identification of bargaining and cost
parameters comes from variation across chains. To build intuition, think of
one manufacturer (labeled m) producing one good and negotiating with
two retailers, h = 1, 2. The customers of retailer 1 dislike the manufac-
turer’s product and the customers of manufacturer 2 really enjoy the prod-
uct. The wholesale price at which the good will be sold to retailer 1, call
it w1, will tend to be close to the manufacturer’s marginal cost cm. The
wholesale price at which the good will be sold to retailer 2, w2, on the
other hand, will tend to be larger. Exactly how much larger will depend
on how much the manufacturer is able to capitalize on the fact that the cus-
tomers of retailer 2 enjoy the product. This is governed by the bargaining
parameter bm.

4.3.2 Estimation and Results

A GMM estimate is the solution to the program

min
γ,b

ḡn(γ, b)′Wnḡn(γ, b) (13)

30Suppose I had ommitted, say, the reduced sugar dummy. These products might use
more expensive sweeteners as ingredients, and thus in that model marginal cost shocks
might be correlated across chains
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where ḡn(γ, b) := n−1
∑

j,h νjh(bm(j), γ, wh, xjh)zjh where zjh is a column
vector with the instrumental variables described above31 and Wn is some
weight matrix. I implement the standard two step procedure to obtain an
optimal GMM. In the first step, I take as weight matrix Wn = (Z ′Z)−1,
where Z is the matrix of instruments. Let θ̂1 be the resulting estimate for
θ = (γ, b). With that estimate, I construct an estimate of the optimal weight
matrix

Ŵ ∗
n =

(
n−1

∑
i

gjh(θ̂1)gjh(θ̂1)
′

)−1
where gjh(θ) = νjh(bm(j), γ, wh, xjh)zjh. The second step consists of mini-
mizing (13) again, using Ŵ ∗

n as the weight matrix.
It is important to note that, conditional on a value of the bargaining

parameters b, estimation is linear on the cost parameters γ - which can be
seen from equation (12). One evaluation of the GMM objective (13), for a
fixed value of b, consists of the following steps:

1. Apply Proposition 2 to obtain manufacturers’ marginal costs as a
function of data and bargaining parameters32.

2. Obtain the implied estimates for γ, given by

γ̂ = (X ′ZWZ ′X)−1X ′ZWZ ′C(b)

where C(b) is the vector of marginal costs for each (product, chain)
pair, obtained in the previous step.

3. Compute ν̂jh(bm(j), γ, wh, xjh) = cjh(wh, bm(j))− x′jhγ̂.

4. Compute ḡn(γ̂, b) = n−1
∑

j,h ν̂jhzjh and form the GMM objective in
(13).

31There are 111 instruments in total, 96 of which are cost covariates. The large number
comes from the chain dummies.

32To compute the terms in equation 9, I (i) set ξjs to zero and (ii) compute the ex-
pectations with respect to ηs by simulation, sampling from the residuals obtained from
running the stores’ marginal cost regressions.
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Because γ can be found in closed form for a given value of b, the non-
linear search can be restricted to the bargaining parameters. I minimize
the GMM objective using a derivative-free global optimizer33 with some-
what loose termination parameters. Once the global optimizer has found
a solution, that solution is used as the starting point for a derivative-free
local optimizer34, now with tighter termination conditions. After the first
estimation step (GMM with Wn = (Z ′Z)−1, as explained above), I do not
use that estimate as the starting point for solving the second GMM prob-
lem. The idea is that we want to use the first GMM estimate to construct an
estimate of the optimal weight matrix, but we don’t want to “bias” the so-
lution algorithm towards the previously found estimate35. Instead I draw
a random vector as the starting point and repeat the two-step solution
procedure above. The resulting estimate doesn’t depend on the randomly
drawn starting points.

I now explain how standard errors are computed, acknowledging that
they are not correct - an updated version of this paper will include appro-
priately bootstraped standard errors. The standard errors shown below
are directly computed from the standard result for the asymptotic distri-
bution of extremum estimators - of which GMM is a special case -, e.g.,
Newey and McFadden (1994). There are two reasons why these are incor-
rect. First, they fail to account for the variance coming from the construc-
tion of wholesale prices performed before the estimation of the bargaining
parameters. Second, the characterization of the asymptotic distribution
of extremum estimators is based on the first order conditions for an inte-
rior solution for the estimation program, but the estimate I obtain is not
interior. From now on, these two caveats will be ignored.

As mentioned above, bargaining parameters are allowed to vary across

33Controlled Random Search, see Kaelo and Ali (2006). I use the implemention in
NLOPT. See http://ab-initio.mit.edu/nlopt.

34COBYLA, see Powell (1994). I use the implementation in NLOPT. See http://ab-
initio.mit.edu/nlopt.

35Note that the estimator in the first step is also a consistent estimator of θ and thus the
resulting estimate should be a good starting point for the second step. However, I want
to allow for non-trivial changes from one step to the other and thus follow the procedure
described above. This decision doesn’t change the results.
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Manufacturer b̂m Std. Dev.
Conagra 0.0886 0.2393
Unilever 10−5 0.1138
J M Smucker Co. 0.4489 0.0911
Others 1 0.4367

Table 6: Bargaining parameter estimates

manufacturers, but since there are three large manufacturers and many
small ones36, I assume that all the small manufacturers have the same bar-
gaining parameter. Table 6 shows the results37. The estimates show that
Conagra and Unilever have little bargaining power in the vertical chain.
The estimate for Smucker is close to 1/2 and small manufacturers (labeled
“OTHERS” in table 6) seem to have substantial bargaining power in the
vertical chain, which might be due to small manufacturers focusing on
high-end products.

5 Counterfactual Exercises

In this section I present some counterfactual exercises. In the counterfac-
tuals shown here, I focus on one chain38. I choose a chain that negotiates
with all manufacturers and sells private label products. Specifically, the
chain I consider sells 34 different products: 12 produced by J M Smucker
Co., 11 produced by Conagra Foods Inc., 6 produced by Unilever, 4 private
label products and 1 produced by one of the small manufacturers. For the
purpose of the counterfactual exercises, I assume there are no shocks to
stores’ marginal costs, for computational convenience39.

I consider three types of counterfactuals: (i) excluding all the products

36Conagra is the smallest of the “large” manufacturers: there are 579 observations at
the (UPC, Chain) level where the UPC is manufactured by Conagra. The largest of the
“small” manufacturers is Hersheys, with 60 (UPC, Chain) pairs in the data.

3710−5 was the lower bound imposed on the GMM problem.
38Future iterations of this paper will perform the same exercise for all chains.
39Computing the expectations in equation 9 needs to be done only once for estimation,

which is feasible. As explained in this section, solving for SPNiN equilibria involves
evaluating those expectations multiple times, which is costly.
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of a given manufacturer (including private label products), (ii) assuming
all products of a given manufacturer become private label products and
(iii) mergers between two manufacturers. I compute changes in wholesale
prices, retail prices and consumer surplus.

I start this section by explaining, in subsection 5.1, how I solve for SP-
NiN wholesale prices. The subsequent sections report the results.

5.1 Solving for SPNiN Wholesale Prices

In a Nash-in-Nash equilibrium wholesale price vector, every Nash product
must be maximized with respect to that manufacturer’s wholesale prices,
given the wholesale prices of every other manufacturer. This yields a sys-
tem of first order conditions given by40

bm
∂Vm
∂ŵj

(w)
1

Vm(w)
+ (1− bm)

∂Vh
∂ŵj

(w)
1

Sh(w)
= 0, j = 1, . . . , J

Explicitly,

bm

∑Sh

s=1 Ωs
j(w)(wh − ch) +

∑Sh

s=1D
s,h
j (ps(c̃(w)))∑Sh

s=1 D̄
s
j(p

s(c̃s(ŵm, w−m))) · (wh − ch)
=

1− bm
Sh(w)

Sh∑
s=1

Ds,h
j (ps(c̃s(w)))

(14)
For the definition of the terms in the equation above, see the proof of
Proposition 2. In a SPNiN equilibrium wholesale price vector, equation
(14) must hold for every product j ∈ Jh \ Jh,PL. I solve this system of
equations to obtain candidates for Nash-in-Nash equilibria. Suppose I can
find all the solutions to this system of equations and suppose there are
finitely many. The set of solutions is a superset of the set of Nash-in-Nash
equilibria. To find the Nash-in-Nash equilibria, I can then test every solu-
tion to the system of equations above. Specifically, for each candidate wh,
solve, for each manufacturer m

max
ŵm

Nm(ŵm, w−m)

40For the derivation of the equations shown here, and the definition of the terms in
these equations, see the proof of Proposition 2.
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where Nm is the Nash product for manufacturer m. Let w′m denote a solu-
tion to this problem. If Nm(w′m, w−m) = Nm(wh) for every m, then wh is a
Nash-in-Nash equilibrium. This is the procedure I follow to solve for SP-
NiN equilibria: first find solutions to the system of FOCs and then verify
whether the solutions are indeed equilibria.

The system of equations above is a complex one. In particular, it takes
into account how stores change their prices once wholesale prices change
- this is part of the Ωs

j terms - again, see the statement and proof of Propo-
sition 2. Moreover, the logic outlined above requires me to try many dif-
ferent starting points41, in the hope of finding all solutions to the system
of FOCs. To be able to efficiently evaluate the left hand side of equation
(14), I show in appendix B how the Implicit Function Theorem allows me
to further characterize how stores’ optimal prices change in response to
changes in wholesale prices42. I find a unique solution for the FOCs and
this solution is indeed a SPNiN: the maximum value (over manufacturers)
of (maxŵm Nm(ŵm, w−m)−Nm(w∗h)) is equal to 6.46× 10−7, where w∗h is the
solution to the FOCs.

5.2 Wholesale Price Changes

In this subsection I present results on equilibrium wholesale prices. All
the tables in this section have the same structure as table 7: entry (i, j)

shows the results when it is assumed that all the products of manufac-

41Good starting points turn out to be critical to solve this system of as many as 34
equations (the number of equations varies with the counterfactual being considered). For
many starting values I don’t find solutions. A good set of good starting points is given
by

wj = cj(1 + bm(j)µ)

where µ ∈ [0, 1]. The logic is that under these prices the margins (wj − cj)/cj are propor-
tional to the bargaining parameters. To solve for the benchmark case (where ownership
of products is as in the data), I take 100 draws of a U [0, 1] distribution for the value of µ.
See the text for some details on the results.

42Note that Proposition 1 subsumes Appendix B. However, the results shown below
were obtained using the analysis in Appendix B. A future iteration of this paper will
use Proposition 1 instead, as it provides a sharper and computationally more efficient
characterization of how stores’ optimal prices change in response to changes in wholesale
prices.
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turer i are produced and sold by manufacturer j instead; the column “Ex-
cluded” shows the results under the assumption that the products of man-
ufacturer i cease to be sold by the retailer. In counterfactual (i, j) it is
assumed that the bargaining power of the resulting firm is equal to the
bargaining power of manufacturer j. Counterfactual (i, j) might thus be
more appropriately interpreted as manufacturer j acquiring manufacturer
i. Counterfactual (j, i) corresponds to the opposite acquisition; the only
difference is the bargaining power of the resulting firm.

Table 7 shows the average (across products) wholesale price percent
change, where the average is computed across products that are branded
products in both the benchmark and in counterfactual (i, j). Excluding a
manufacturer’s products increases the wholesale prices of the remaining
products, but not by a lot. Assuming branded products become private la-
bel products decreases the wholesale prices of the other branded products,
but again the effect is small. Mergers, however, can have large effects on
equilibrium wholesale prices. What drives these effects is the difference
in bargaining power between firms i and j. Table 8 shows the average
wholesale price percent change, where the average is computed across all
products, including private label products. The results involving private
label products are substantially different in tables 7 and 8 because when
branded products become private label products the retailer is able to pro-
cure these products at cost. Conversely, when private label products are
sold by one of the upstream firms, the retailer will pay a mark-up on these
products.

Table 7: Wholesale Price Inflation: Products Negotiated in Both Scenarios

Excluded Private Label Conagra Smucker Unilever Others

Private Label 0.096 0.050 0.197 0.0001 0.092
Conagra 0.677 −0.044 7.051 −1.124 11.234
Smucker 0.138 −0.053 −4.357 −6.180 7.242
Unilever 0.153 0 0.639 3.670 6.056
Others 0.003 −0.004 7.231 −0.400 1.556
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Table 8: Wholesale Price Inflation: All Products

Excluded Private Label Conagra Smucker Unilever Others

Private Label 0.084 0.584 7.051 0.0001 23.898
Conagra 0.560 −0.992 6.221 −0.992 9.912
Smucker 0.113 −5.453 −3.845 −5.453 6.390
Unilever 0.131 −0.0001 0.564 3.238 5.343
Others 0.002 −0.829 6.381 −0.353 1.373

5.3 Retail Price Changes

Table 9 shows the average (across products) percent change in retail prices
of products that are branded in both the benchmark and in counterfactual
(i, j). As shown above, excluding a manufacturer’s products leads to a
small increase in the wholesale prices of the remaining products. How-
ever, with fewer products, the retailer has an incentive to reduce the price
of the remaining products. The reason is that with fewer products it’s
more likely that marginal consumers will move to the outside option after
a price increase. This effect dominates in all cases, except for the exclusion
of private labels, when the increase in wholesale price dominates - but the
resulting effect on retail prices is small.

Assuming that branded products become private label products leads
to increases in the retail prices of the remaining branded products. Tech-
nically, the reason is that the retailer’s optimal mark-up43 increases when
the costs of some of the goods decrease. Economically, the lower costs of
the new private label products allow the retailer to charge larger mark-ups
while still retaining many consumers. The retailer thus optimally increases
its mark-up and a fraction of consumers shifts towards the new private la-
bel products. As shown above, upstream mergers can have positive or
negative effects on the wholesale prices of branded products, depending
on the bargaining parameters of the manufacturers involved. This results
in changes in retail prices that similarly depend on which counterfactual
is considered.

Table 10 shows the average percent change in retail prices, where the

43Remember Proposition 1.
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average is now taken across all products, including private label products.
Entries in the private label row now show positive and sometimes large
retail price increases, because these results account for the fact that former
private label products are more costly for the retailer in the counterfac-
tual. The private label column shows that despite the increase in the retail
prices of negotiated products (table 9), when considering all products re-
tail prices decrease, because former branded products are now cheaper
for the retailer to procure, which maps into cheaper retail prices for those
products. Together with the discussion of table 9, this shows that after
branded products become private label products, the retailer increases its
mark-up but by an amount that makes the retail prices of the new pri-
vate label products smaller than in the benchmark; prices of the remain-
ing branded products increase, and the retailer thus diverts part of the
demand to private label products.

Table 9: Retail Price Inflation: Negotiated Products

Excluded Private Label Conagra Smucker Unilever Others

Private Label 0.037 −0.040 −0.273 0.0001 −0.485
Conagra −2.173 0.206 3.388 −0.507 5.911
Smucker −4.210 2.493 −1.320 −1.855 3.163
Unilever −0.393 0.00000 0.389 2.270 3.879
Others −0.027 0.046 5.109 −0.274 1.444

Table 10: Retail Price Inflation: All Products

Excluded Private Label Conagra Smucker Unilever Others

Private Label 0.028 0.263 4.482 0.0001 16.138
Conagra −2.452 −0.407 2.771 −0.407 4.950
Smucker −4.395 −1.264 −0.905 −1.264 2.522
Unilever −0.429 −0.00003 0.335 1.962 3.375
Others −0.029 −0.537 4.504 −0.240 1.265

39



5.4 Changes in Consumer Surplus

Finally, table 11 shows the percent change in consumer surplus. Exclud-
ing products from the retailer’s portfolio has a large negative impact on
consumers’ surplus, because of the diminished variety. The results shown
in the other entries of table 11 are the direct results of equilibrium price
changes. For example, assuming Smucker’s products become private la-
bel products leads to large benefits to consumers because of the result-
ing decrease in the prices of Smucker’s products. Similar reasoning holds
when, e.g., Conagra’s products are assumed to be sold by Unilever: be-
cause Unilever’s bargaining power is smaller than Conagra’s, the result-
ing equilibrium wholesale prices of Conagra’s products will be lower than
in the benchmark, which in turn will result in lower counterfactual retail
prices for these products and larger consumer welfare. Interestingly, be-
cause mergers can have both positive and negative effects on prices de-
pending on which is the acquiring firm, some mergers are beneficial to
consumers (e.g., when Unilever acquires Conagra or Smucker) and some
mergers can decrease consumer surplus.

Table 11: Changes in Consumer Surplus

Excluded Private Label Conagra Smucker Unilever Others

Private Label −0.227 −0.575 −3.155 0.0002 −4.266
Conagra −22.401 1.923 −10.868 1.922 −13.148
Smucker −33.498 17.903 12.703 17.902 −14.063
Unilever −3.834 0.00004 −0.407 −2.070 −2.419
Others −0.226 0.387 −0.225 0.083 −0.650

6 Conclusion

This paper studies vertical relationships between retailers and manufac-
turers. Specifically, I study what are the effects of private label products
and the upstream market structure on equilibrium wholesale prices, retail
prices and consumer welfare.
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To address these questions, I develop and estimate a model of whole-
sale price negotiation between retail chains, which consist of multiple stores
that are local monopolists, and multiple manufacturers. Estimating de-
mand at the retailer level proves to be challenging. I explain how these
challenges can be overcome using stores’ pricing equations and the as-
sumption that stores’ marginal cost shocks and demand unobservables are
uncorrelated. Moreover, I show that the bargaining model has an inver-
sion. This allows me to estimate bargaining and manufacturer marginal
cost parameters via GMM without solving the model, extending the method-
ology of Gowrisankaran et al. (2015) to the case with downstream profit
maximization.

I use the estimated model to conduct three types of counterfactual ex-
ercises: (i) excluding all the products of a given manufacturer (including
private label products), (ii) assuming all products of a given manufacturer
become private label products and (iii) mergers between two manufac-
turers. Indirect equilibrium effects are small. For example, eliminating
private label products induces only a small increase in equilibrium whole-
sale prices of branded products. Assuming all products of a given manu-
facturer become private label products also induces only a small decrease
in the wholesale prices of products of other manufacturers.

Nevertheless, wholesale and retail prices of goods produced by one
of the manufacturers involved in the counterfactual can change substan-
tially. These prices can increase or decrease, depending on the manufac-
turers considered in the counterfactual. As a consequence, mergers can be
harmful or beneficial to consumers. Assuming products of a given manu-
facturer become private label products can generate large increases in con-
sumer surplus: even though the indirect effects on the wholesale prices
of other manufacturers is small, consumers can benefit greatly from the
lower prices of the new private label products.

In summary, private label products do not seem to greatly improve
the retailer’s bargaining position vis-à-vis manufacturers. In terms of the
upstream market structure, the number of retailers doesn’t seem to be rel-
evant by itself. Rather, what matters is the nature of the vertical relation-

41



ships with different manufacturers, as captured by the bargaining param-
eters.
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Appendix

Appendix A Proofs and Auxiliary Results

Proof of proposition 1

Proof. The first order condition of the profit maximization problem with
respect to pj is

σj(p) +
∑
k

(pk − ck)
∂σk
∂pj

(p) = 0

Using the logit functional form this becomes (and dropping the argument
p)

σj + ασj(1− σj)(pj − cj)− α
∑
k 6=j

(pk − ck)σjσk = 0

or, since σj(p) > 0 for all j and all p,

1 + α(1− σj)(pj − cj)− α
∑
k 6=j

(pk − ck)σk = 0

Now note that (1 − σj) = σ0 +
∑

k 6=j σk, so that the previous equation can
be rewritten as

0 = 1 + ασ0(pj − cj) + α

(∑
k 6=j

σk(pj − cj)−
∑
k 6=j

σk(pk − ck)

)
= 1 + ασ0µj + α

∑
k 6=j

σk(µj − µk)

= 1 + ασ0µj + α

J∑
k=1

σk(µj − µk) (15)

where µk := pk − ck. In a solution to the problem, this equation must hold
for all j = 1, . . . , J . Take two arbitrary products j1, j2 and subtract the
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corresponding equations above to obtain

0 = ασ0(µj1 − µj2) + α
J∑
k=1

σk(µj1 − µj2)

= ασ0(µj1 − µj2) + α(1− σ0)(µj1 − µj2)

= α(µj1 − µj2)

Since α < 0 and j1, j2 are arbitrary, this proves the constant mark-up prop-
erty (ii). The problem thus reduces to finding the optimal mark-up µ, i.e.,

max
µ

µ
∑
k

σk(c+ µ) = µ(1− σ0(c+ µ))

where c is the vector of marginal costs and c + µ means that µ is added to
every coordinate of c. The first order condition of this problem is

(1− σ0)− µσ′0(c+ µ) = 0

Noting that σ′0(c+ µ) = −ασ0
∑

k σk = −ασ0(1− σ0), this reduces to44

φ(µ) := (1− σ0(c+ µ))(1 + αµσ0(c+ µ)) = 0

Note that (1 − σ0(c + µ)) > 0 for all µ. Define ψ(µ) := 1 + ασ0(c + µ)µ.
Note that ψ(0) = 1 and that limµ→∞ ψ(µ) = −∞, because α < 0. By the
Intermediate Value Theorem, a solution to φ(µ) = 0 exists. Moreover,

ψ′(µ) = α[σ′0(c+ µ)µ+ σ0(c+ µ)] = ασ0(c+ µ)[1− αµ(1− σ0(c+ µ))] < 0

for all µ ≥ 0. It follows that there’s a unique µ∗ such that φ(µ∗) = 0 and
this µ∗ maximizes the monopolist’s profit. This proves parts (i) and (iii).

44Note that imposing the constant mark-up property on equation (15) also yields 1 +
αµσ0 = 0. The argument would then deliver the existence of a unique µ∗ satisfying the
first order conditions of the original problem, but would not imply that the resulting price
vector is indeed a solution for that problem. It would then be necessary to establish the
validity of a second order condition. The argument given here, which reduces the profit
maximization problem to a unidimensional problem, yields existence and uniqueness.
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It remains to prove (iv). So far I have shown that the optimal prices
satisfy p∗j = cj + µ∗(c), where I make explicit the dependence of µ on the
parameter c. It follows that

∂p∗j
∂ck

=

1 + ∂µ
∂cj

(c) if k = j

∂µ
∂ck

(c) k 6= j
(16)

As shown above, µ∗(c) is the unique solution to

f(c, µ) := 1 + αµσ0(c+ µ) = 0

Since ∂f
∂µ

(c, µ) = ασ0(c+µ)[1−αµ(1−σ0(c+µ))] < 0, the Implicit Function
Theorem implies that µ∗(c) is C1 and that

∂µ

∂ck
(c) = − ∂f

∂ck
(c, µ)

/
∂f

∂µ
(c, µ)

Noting that ∂f
∂ck

(c, µ) = −α2µσk(c+ µ)σ0(c+ µ), I obtain

∂µ

∂ck
(c) =

αµσk(c+ µ)

1− αµ(1− σ0(c+ µ))

as desired. ♠

I now establish an auxiliary result used in the proof of Proposition 2.

Lemma 1. Let the value for a store under wholesale prices w be given by

V s(w;J s) = Eη

[ ∑
j∈J s

(psj(c̃
s(w))− c̃sj(wj))Ds

j(p
s(c̃s(w)))

]

Then
∂V s

∂wj
(w) = −Eη

[
Ds
j(p

s(c̃s))
]

Proof. For a given marginal cost vector c̃s, let the value of the store’s profit
maximization problem be πs(ps(c̃s); c̃s) - where ps(c̃s) is the solution to that
problem.
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Exchanging the order of differentiation and integration yields

∂V s

∂wj
(w) = Eη

[
∂

∂wj

∑
j∈J s

(psj(c̃
s(w))− c̃sj(wj))Ds

j(p
s(c̃s(w)))

]

The derivative inside the expectation operator is ∂
∂wj

πs(ps(c̃s); c̃s). Be-
cause c̃sj = wj + τ s + ηsj ,

∂
∂wj

πs(ps(c̃s); c̃s) = d
dcj
πs(ps(c̃s); c̃s), where d

dcj
de-

notes the total derivative with respect to cj . By the Envelope Theorem,

d

dcj
πs(ps(c̃s); c̃s) =

∂

∂cj
πs(ps(c̃s); c̃s)

= −Ds
j(p

s(c̃s(w)))

Taking the expectation with respect to η yields the result. ♠

An immediate corollary to Lemma 1 is given below

Corollary 1.

∂Vh
∂wj

(w) = −Eη

 Sh∑
j=1

Ds,h
j (ps(c̃s))


where Ds,h

j is equal to Ds
j if j ∈ J s and zero otherwise.

Proof. It follows from Lemma 1 and the definition of Vh. ♠

Corollary 1 is used in the proof of Proposition 2 below.

Proof of Proposition 2 .

Proof. Consider the maximization problem in (4). After taking the loga-
rithm of the objective function, the first order condition with respect to ŵj
is given by

bm,h
∂Vm
∂ŵj

(w)
1

Vm(w)
+ bh,m

∂Vh
∂ŵj

(w)
1

Sh(w)
= 0
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where I write Vh(w) instead of Vh(w;Jh) to simplify notation and m is the
manufacturer that produces product j (denoted m(j) below). Rearrang-
ing,

∂Vm
∂ŵj

(w) = − bh,m
bm,h Sh(w)

∂Vh
∂ŵj

(w) Vm(w) (17)

Now note that

∂Vm
∂ŵj

(w) =
∑

{s:j∈J s}

∑
k∈J s∩Jh,m(j)

(wk − cmk )Eη
[
∇Ds

k(p
s(c̃s(w)))′

∂ps

∂cj
(c̃s(w))

]
+

∑
{s:j∈J s}

Eη[Ds
j(p

s(c̃(w)))]

where

∇Ds
k(p)

′ =
(
∂Ds

k

∂p1
(p) . . .

∂Ds
k

∂pJs
(p)
)
,
∂ps

∂cj
(c) =

(
∂ps1
∂cj

(c) . . .
∂psJs

∂cj
(c)
)′

Plugging this and the definition of Vm(w) into equation (17) yields

Sh∑
s=1

Ωs
j(w)(wh − ch) +

Sh∑
s=1

Eη[Ds,h
j (ps(c̃(w)))] = − bh,m

bm,h Sh(w)

∂Vh
∂ŵj

(w)×

×
Sh∑
s=1

Eη
[
D̄s
j(p

s(c̃s(ŵm, w−m)))
]
· (wh − ch)

where Ds,h
j (p) is equal to Ds

j(p) if store s sells product j and it is equal to
zero otherwise. Moreover, Ωs

j(w), D̄s
j(p) ∈ R|Jh,B | are given by (the extra

argument in parenthesis denotes the coordinate)

Ωs
j(w)(k) =

Eη
[
∇Ds

k(p
s(c̃s(w)))′ ∂p

s

∂cj
(c̃s(w))

]
if j ∈ J s, k ∈ J s ∩ Jh,m(j)

0 otherwise

and

D̄s
j(p)(k) =

Ds
k(p) if k ∈ J s ∩ Jh,m(j)

0 otherwise
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Using corollary 1, the last equation can be rewritten as

Sh∑
s=1

Ωs
j(w)(wh − ch) +

Sh∑
s=1

Eη[Ds,h
j (ps(c̃(w)))] =

bh,m
bm,h Sh(w)

Sh∑
s=1

Eη[Ds,h
j (ps(c̃s(w)))]×

×
Sh∑
s=1

Eη
[
D̄s
j(p

s(c̃s(ŵm, w−m)))
]
· (wh − ch)

This equation holds for each j ∈ Jh,B. Stacking these equations then
yields

Sh∑
s=1

Ωs(w)(wh − ch) +

Sh∑
s=1

Eη[Ds,h(ps(c̃(w)))] = −
Sh∑
s=1

Λs(w)(wh − ch)

where Ωs(w) and Λs(w) are the matrices defined in the statement of the
proposition. Rearranging gives(

Sh∑
s=1

Ωs(w) + Λs(w)

)
(wh − ch) = −

Sh∑
s=1

Eη[Ds,h(ps(c̃(w)))]

as we wanted to show. ♠

Appendix B Characterizing Retail Price Changes

with Respect to Changes in Costs

This section characterizes how stores’ optimal prices change in response to
changes in marginal costs45. The results of this section are used in section
5.

Given a product portfolio J s and marginal costs (c1, . . . , cJ), a store
sets prices to solve

max
p

J∑
j=1

(pj − cj)Dj(p)

45Note that Proposition 1 subsumes the results in this section. However, the results
reported in this version of the paper use the characterization in this section instead of
Proposition 1.

48



The first order conditions are∑
k

(pk − ck)
∂Dk

∂pj
(p) +Dj(p) = 0, j = 1, . . . , J

Stacking these equations yields

J ′D(p)(p− c) +D(p) = 0 (18)

where Jf is the jacobian of the function f . Equation (18) implicitly defines
p as a function of c. I’m interested in characterizing Jp(c). DefineH(p, c) :=

J ′D(p)(p − c) + D(p), which is the left hand side of (18). By the Implicit
Function Theorem,

Jp(c) = −Hp(p, c)
−1Hc(p, c) (19)

where Hp denotes the matrix of partial derivatives of H with respect to
prices and Hc is similarly defined. From (18), Hc(p, c) = −J ′D(p).

Now note that

∂Hj

∂pl
(p, c) =

∑
k

(pk − ck)
∂2Dk

∂pl∂pj
(p) +

∂Dl

∂pj
(p) +

∂Dj

∂pl
(p)

and therefore

Hp(p, c) =
∑
k

(pk − ck)
∂2Dk

∂p∂p′
(p) + JD(p)′ + JD(p)

where ∂Dk

∂p∂p′
(p) is the Hessian matrix of the demand for good k evaluated

at p. This result and Hc(p, c) can now be plugged in equation (19) to obtain
Jp(c). Computationally, I treat (19) as a collection of J systems of linear
equations. The solution to the j−th system of equations delivers the j− th
column of Jp(c).
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