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We revisit the estimation of dynamic games with continuous control

variables, such as investments in R&D, quality, and capacity. We show how

to use the recursive characterization of Markov Perfect Equilibria (MPE)
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common in the estimation of dynamic games. We use Monte Carlo ex-

periments based on an empirically-relevant model of investment in R&D
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ternatives. We find that the indirect inference estimator outperforms the
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1 Introduction

Many questions of interest to Industrial Organization economists involve firm
choices that have persistent effects on market conditions. Such choices include
investments in research and development, the choice of productive capacity,
and the choice of product characteristics. Many other examples can be given.
Decisions of this type are inherently dynamic and are often taken in industries
with few firms. Therefore, their study necessitates the use of dynamic oligopoly
models. Furthermore, many of these choices, such as the ones above, are natu-
rally modeled as continuous variables.

This paper revisits the estimation of dynamic oligopoly models with contin-
uous controls. The estimation of such models was made feasible by the seminal
contribution of Bajari et al. (2007), henceforth BBL. We make the observation
that the main estimator proposed by BBL does not use the full structure of the
model, in that it does not exploit the structure of equilibrium policies. Esti-
mators that exploit this structure should exhibit improved econometric perfor-
mance. We propose estimators that do use the structure of equilibrium policies
and conduct Monte Carlo exercises that compare their performance to multiple
implementations of BBL.

Our Monte Carlo exercises are based on an extension of Hashmi and van
Biesebroeck (2016) – henceforth HvB. HvB propose and estimate an equilib-
rium model of innovation in the automobile industry. They are interested in
the equilibrium relationship between market structure and innovation. In their
model, firms engage in R&D – measured by their patenting activity – to in-
crease product quality. We extend the HvB model to allow for firm entry and
exit. We base our simulation exercises on the Hashmi and van Biesebroeck
(2016) model because it underpins an actual empirical application, and thus
accurately represents models used in empirical applications by Industrial Or-
ganization economists.

The first step in our proposed estimation routine consists of estimating pol-
icy functions and state transitions from the data. This step is similar to BBL
and estimators of dynamic games with discrete controls, such as the ones pro-
posed by Aguirregabiria and Mira (2007), Pakes, Ostrovsky, and Berry (2007),
and Pesendorfer and Schmidt-Dengler (2008). We depart from BBL in the sec-
ond step. For a given guess of the structural parameters, we use the estimated
policy functions and state transitions to form and solve the maximization prob-
lems in the right-hand side of firms’ Bellman equations. This yields predicted
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decisions as a function of structural parameters. We then project these predicted
decisions onto a space spanned by basis functions of state variables. Finally, we
minimize a measure of the distance between the projections of predicted and
observed firm choices. Our estimator thus combines elements of the two-step
estimators that sprung from Hotz and Miller (1993) with Indirect Inference esti-
mators à la Gourieroux, Monfort, and Renault (1993). We refer to this estimator
as the Recursive Indirect Inference (Rec-II) estimator. We also consider alter-
native estimators based on recursive equilibrium conditions. Specifically, we
consider a nonlinear least squares estimator (Rec-NLLS) and the continuous-
control analog of Pesendorfer and Schmidt-Dengler (2008) (Rec-MD). The intu-
ition underpinning the estimators based on recursive equilibrium conditions is
simple: under the maintained assumption that the estimated policies constitute
a Markov Perfect Equilibrium, solving the right-hand-side of firms’ Bellman
equations must return the same policy.

We find that the Rec-II estimator has desirable properties. In our Monte
Carlo exercise, its finite-sample bias is small and the estimator is precise. We
compare it to three implementations of BBL, each using different forms of policy
deviations: additive, multiplicative, and what we term asymptotic. The first
one uses additive perturbations to the estimated policy function, as in BBL’s
simulations and in Ryan (2012). The second one uses multiplicative deviations,
as in HvB and recommended by Srisuma (2013). The third uses the asymptotic
distribution of the empirical policies to construct deviations. We find that all
implementations of BBL have substantial finite sample bias.

We relate these findings to the shape of the objective functions that define
each estimator. Out estimator’s objective function attains its minimum close
to the truth and has large curvature. On the other hand, the BBL objective is
sometimes minimized far away from the truth, and sometimes it displays no
curvature at all around the true parameter. We find that the Rec-NLLS and
Rec-MD estimators perform reasonably well, but are dominated by the Rec-II
estimator and are more expensive to compute.

Besides its superior econometric performance, the Rec-II estimator also en-
joys a practical advantage relative to BBL: it does not require the econometrician
to choose policy deviations.1 This is an advantage, as the performance of the
BBL estimator may very well depend on the deviations chosen by the analyst
and the literature provides little guidance on how to choose deviations.2 This

1This advantage is shared by all estimators based on recursive equilibrium conditions.
2As noted above, some guidance is provided by Srisuma (2013). He suggests that multiplicative
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concern is substantiated by the different performance of the three BBL alterna-
tives we consider.

It would be remiss of us not to remind the reader that Bajari et al. (2007) do
discuss a second estimator based on solving for firms’ optimal policies, albeit in
the context of a model without shocks to the cost of investment and with deter-
ministic scrap values. Nevertheless, the empirical literature has converged to
using the estimator that BBL discuss at greater length, based on value function
inequalities. Indeed, a number of applications, including very recent ones, ap-
ply the inequality estimator. These include Ryan (2012), Hashmi and van Biese-
broeck (2016), Fowlie, Reguant, and Ryan (2016), and Liu and Siebert (2022).
We show how to construct estimators based on firms’ optimal policies in envi-
ronments with random investment cost shocks and random scrap values, and
establish that those estimators are computationally tractable for a model that is
representative of those used in empirical applications. An important paper that
does use firms’ optimal policies to estimate a dynamic model is Jofre-Bonet and
Pesendorfer (2003). In a dynamic auction model, they show that firms’ first-
order conditions and the observed distribution of bids identify the distribution
of firms’ costs. We show that similar ideas extend to the estimation of parame-
ters determining firms’ flow profits.

The paper most closely related to our is Srisuma (2013). Srisuma also ob-
serves that the BBL inequalities may fail to identify the structural parameters
and proposes an estimator that makes use of agents’ optimization problems in
a two-step procedure. Srisuma’s estimator is based on minimizing a distance
between the observed conditional distributions of agents’ actions and the one
implied by agents’ (pseudo) maximization problems. This has practical draw-
backs. The estimation of the implied distribution is done by simulation. A
precise estimator may require the solution of many (static) optimization prob-
lems – many more than what we have to solve. Moreover, the implied objective
is discontinuous in the structural parameters. These two features make the
estimator potentially costly and difficult to compute for the models that practi-
tioners take to data. Indeed, the Monte Carlo simulations in Srisuma (2013) are
based on simple static models.

In light of the aforementioned discussion, we view our contributions as
threefold. First, we show how to implement estimators based on recursive equi-
librium conditions in an empirically relevant setting, including shocks to firms’

deviations have more identifying power than additive ones. We implement both and find their
performance to be equally poor.
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marginal costs of investment and random scrap values. Second, we show that
these estimators can substantially outperform multiple implementations of the
commonly-applied BBL inequality estimator. Third, we compare the perfor-
mance of different estimators based on recursive equilibrium conditions and
find support for an estimator based on Indirect Inference. We also show that
one can do away with value function simulation and can instead solve for these
objects, thus eliminating simulation error.

The rest of the paper is organized as follows. In section 2 we discuss a gen-
eral model of dynamic competition in an oligopolistic industry. In section 3 we
discuss estimators based on recursive equilibrium conditions. In section 4 we
provide a brief review of the BBL inequality estimator. In section 5 we introduce
the specifics of the Hashmi and van Biesebroeck (2016) model, discuss details
of how we implement the different estimators, and present simulation results.
Section 6 concludes.

2 The Economic Model

We model the dynamic interaction between oligopolistic competitors. There are
N̄ firms in the market, including N incumbents and N̄ − N potential entrants.
N̄ is a parameter of the model whereas N is an endogenous variable. Each firm
has characteristics ξi ∈ Ξ. The set of possible firm characteristics Ξ satisfies
Ξ ⊂ R ∪ {−∞} and −∞ ∈ Ξ, where −∞ represents the firm being inactive.
Time is discrete and the horizon is infinite. The state of the industry at time t is
ξt = (ξ1t, . . . , ξN̄t).3

At the beginning of the period firm i earns flow profit πi(ξt). If ξi = −∞,
then πi(ξt) = 0. Flow profits are typically modeled as the outcome of competi-
tion in static variables such as prices or quantities. We do not need to specify
the underlying model that generates πi. Rather, we treat these functions as pa-
rameters of the dynamic game. We assume that the functions πi are symmetric,
i.e., that

πi(ξi, ξ2, . . . , ξi−1, ξ1, ξi+1, . . . , ξN̄) = π1(ξ) = π(ξ) for all i = 2, . . . , N̄ (1)

and
π(ξ1, ξ−1) = π(ξ1, ξp(−1)) (2)

3It is straightforward to accommodate exogenous states that capture, e.g., changing demand
and/or cost conditions.
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for any permutation p(·) of the indices 2, . . . , N̄ – see, e.g., Doraszelski and Sat-
terthwaite (2010).4

After firms earn profits, incumbents privately observe scrap values ρit ∈ R+

and potential entrants privately observe entry costs ϕit ∈ R+. Scrap values and
entry costs are iid draws from the distributions Fρ and Fϕ, respectively. Upon
observing these random variables, firms simultaneously decide whether or not
to be active in period t + 1. We denote the decision to be active by αit = 1;
choosing not to be active is represented by αit = 0. Firms who decide not to be
active in the next period perish and are replaced by new potential entrants.

Besides entry and exit decisions, firms also invest to affect the evolution of
their characteristics ξit. Investment choices are denoted by xit ∈ R+. After entry
and exit decisions are made, all firms that chose to be active in t + 1 privately
observe investment cost shocks νit ∈ S ⊆ R.

Investment cost shocks are iid draws from the distribution Fν . Those firms
then simultaneously choose their levels of investment and incur investment
costs c(xit, νit).5

We assume that the distribution of ξt+1 conditional on ξt and firms’ action
profile at = (a1t, . . . , aN̄t), where ait = (αit, xit), satisfies

Fξ(ξt+1 | ξt,at) =
N̄∏
i=1

Fξ(ξt+1 | ξt, ait) . (Conditional Independence)

Note that we assume that Fξ(ξt+1 | ξt, ait) is the same for all firms. This assump-
tion makes two restrictions. First, the lack of statistical dependence between
firms’ future qualities rules out common determinants of firm characteristics. It
is possible to accommodate those. Second, the independence between a firm’s
future characteristics and competitors’ current characteristics and actions im-
plies firms cannot directly affect their competitors’ characteristics. Such depen-
dence would not raise conceptual difficulties, but we rule it out to simplify the
exposition and align with the literature. Finally, note that firms enter/exit if and
only if they choose to: for all ξt ∈ Ξ and xt ∈ R+, Fξ(−∞ | ξt, (0, xt)) = 1 and

4These conditions are sometimes called, respectively, symmetry and anonymity – see, e.g.,
Doraszelski and Pakes (2007). Doraszelski and Satterthwaite (2010) call a set of functions sym-
metric if they satisfy both conditions. We adopt their terminology.

5We restrict attention to scalar firm characteristics ξit and investment xit. Accommodating
multidimensional characteristics and actions is conceptually straightforward but may generate
computational challenges. Perhaps for this reason, we are unaware of papers estimating or
studying dynamic games with multiple continuous choices. We thus restrict attention to the
scalar case as that covers most (perhaps all) of the literature and saves on notation.
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Fξ(−∞ | ξt, (1, xt)) = 0. In what follows, we will write Fξ(ξt+1 | ξt, xt) instead of
Fξ(ξt+1 | ξt, (1, xt)).

2.1 Equilibrium Concept

Given the assumptions we have made imply ex-ante firm symmetry, our at-
tention will be directed towards Symmetric Markov Perfect Equilibria (SMPE).
The literature has largely focused on symmetric environments and SMPEs due
to their computational convenience. The Markov restriction constrains firm
behavior to only depend on payoff relevant variables: publicly observed firm
characteristics ξt and private information εit = (ρit, ϕit, νit). The symmetry re-
striction imposes that value and policy functions satisfy conditions analogous
to (1) and (2). Under condition (1), it suffices to compute policy and value func-
tions from the perspective of firm 1. We thus focus on firm 1’s dynamic pro-
gramming problems without loss of generality. Moreover, under condition (2)
we can compute value and policy functions on a reduced state space. Instead
of considering the original state space Ξ := ΞN̄ , we can map states that are
equivalent from firm 1’s perspective onto an arbitrary member of that equiva-
lence class. For instance, suppose N̄ = 3 and Ξ = {−∞, 1, 2}. Then ξ = (1, 1, 2)

and ξ̃ = (1, 2, 1) are equivalent from firm 1’s perspective. It suffices to com-
pute value and policy functions for one of these two states. We focus on the
reduced state space ΞR := {ξ ∈ Ξ : ξ2 ≤ ξ3 ≤ . . . ≤ ξN̄}. Given a state ξ ∈ ΞR,
we denote by ξj the corresponding state in ΞR from the perspective of firm j,
i.e., ξj = (ξj, s(ξ−j)), where ξj is the j-th coordinate of ξ and s(ξ−j) denotes ξ−j

sorted in an increasing order.
In what follows, we will denote a strategy by

σ(ξ, ε) =
(
αI(ξ, ρ), αE(ξ, ϕ), σx(ξ, ν)

)
,

where ε = (ρ, ϕ, ν) and αI and αE denote, respectively, the incumbent’s and
entrant’s decision to be active in t+ 1.

2.2 The Incumbent’s Problem

Denote by VI(ξ, ρ) the expected net present value (ENPV) of an incumbent faced
with public state ξ and scrap value ρ. Denote by V A

I (ξ, ν) the ENPV of an in-
cumbent that has chosen to be active and has observed investment cost shock
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ν. Then

V A
I (ξ, ν) = max

x∈R+

{
π(ξ)− c(x, ν) + βE [VI(ξ

′, ρ) | ξ, x, σ]
}

(3)

where

E[VI(ξ
′, ρ) | ξ, x, σ] =

∫
ε−1

∫
ξ′

∫
ρ

VI(ξ
′, ρ) dFρ dF (ξ′ | ξ, (1, x), σ−1(ξ, ε−1)) dGε−1

(4)
and σ−1(ξ, ε−1) = (σ(ξ2, ε2), . . . , σ(ξN̄ , εN̄)).

Let V̄I(ξ) :=
∫
ρ
VI(ξ, ρ) dFρ. By conditional independence∫

ξ′
V̄I(ξ

′) dF (ξ′ | ξ, (1, x), σ−1(ξ, ε−1)) =

∫
ξ′1

W (ξ′1 | ξ, ε−1, σ) dF (ξ′1 | ξ1, x)

where

W (ξ′1 | ξ, ε−1, σ) =

∫
ξ′2

. . .

∫
ξ′
N̄

V̄I(ξ
′
1, ξ

′
−1) dF (ξ′N̄ | ξN̄ , σ(ξN̄ , εN̄)) . . . dF (ξ′2 | ξ2, σ(ξ2, ε2))

is the incumbent’s ENPV of starting a period with characteristic ξ′1 given ξ and
ε−1 and that its competitors behave according to σ.

Under the additional assumption of independence of the εi, the integral with
respect to ε−1 can be written as a multiple integral. Changing the order of inte-
gration in (4), we have multiple terms of the form∫

εj

∫
ξ′j

V̄I(ξ
′)dF (ξ′j | ξj, σ(ξj, εj)) dGεj =

∫
ξ′j

V̄I(ξ
′) dF σ(ξ′j | ξj) (5)

where
F σ(ξ′j | ξj) :=

∫
εj

F (ξ′j | ξj, σ(ξj, εj)) dGεj . (6)

It is clear that that equation (5) holds when F (ξ′ | ξ, x) has a density for all
(ξ, x) or Ξ is finite. Appendix A.1 establishes equation (5) for general F (ξ′ |
ξ, x) under a technical condition. This implies that the ensuing results hold for
continuous, discrete, and discrete-continuous public state transition processes.

In summary, we have

E[VI(ξ
′, ρ) | ξ, x, σ] =

∫
ξ′1

W (ξ′1 | ξ, F σ) dF (ξ′1 | ξ1, x) ,
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where

W (ξ′1 | ξ, F σ) =

∫
ξ′2

. . .

∫
ξ′
N̄

V̄I(ξ
′
1, ξ

′
−1) dF

σ(ξ′N̄ | ξN̄) . . . dF σ(ξ′2 | ξ2) (7)

and F σ is given by (6).6

The first-order condition of the maximization problem on the right-hand
side of (3) is thus

−∂c(x, ν)

∂x
+ β

∂

∂x

(∫
ξ′1

W (ξ′1 | ξ, F σ) dF (ξ′1 | ξ1, x)

)
≤ 0 ,

with equality if the solution is interior. It is desirable for the investment first-
order condition to be sufficient for an optimum. Sufficiency is useful both in
equilibrium computation and in estimation based on firms’ optimal policies.
To establish sufficiency of the investment first-order condition, we will make
the following assumption.

Assumption 1. Let Ξ be a compact subset of the real line, and denote its min-
imum and maximum by ξm and ξM . Let Ξ◦ be the interior of Ξ (understood in
the discrete case as Ξ \ {ξm, ξM}). The family of distributions F (· | ξ, x) is such
that, for all ξ ∈ Ξ and ξ′ ∈ Ξ◦,

(a) F (ξ′ | ξ, x) is strictly decreasing and strictly convex in x;

(b) F (ξm | ξ, x) is decreasing and convex in x.

Assumption 1(a) states that for any current and future characteristics (other
than the endpoints of Ξ), an increase in investment x causes the cumulative dis-
tribution function to decrease; i.e., an increase in x increases a firm’s distribu-
tion of future quality in the first-order stochastic dominance sense. Moreover,
investment has decreasing marginal returns in the sense that the reduction in
the CDF is decreasing in investment. Assumption 1(b) allows for the contin-
uous case, where F (ξm | ξ, x) = 0 for all ξ and x, and for the discrete case in
which F (ξm | ξ, x) may be strictly positive and depend on x.

Proposition 1. Assume

(a) c(x, ν) is convex in x;

6We abuse notation slightly by denoting the integral in (7) by W (ξ′1 | ξ, Fσ) when we have
already defined W (ξ′1 | ξ, ε−1, σ) above. We will, however, have no further need for the latter,
and we thus retain the former.
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(b) F (ξ′ | ξ, x) is twice continuously differentiable in x;

(c) W (ξ′ | ξ, F σ) is increasing in ξ′ for all ξ.

Then under Assumption 1

v(x; ξ, ν) = π(ξ)− c(x, ν) + β

∫
ξ′1

W (ξ′1 | ξ, F σ) dF (ξ′1 | ξ1, x)

is strictly concave in x.

Proof. See Appendix A.2.

We make three assumptions in addition to Assumption 1. First, we assume
that the cost function is convex in investment. This is a standard restriction. Sec-
ond, we impose twice continuous differentiability of the transition functions.
This is a technical condition required in the proof, but has little economic con-
tent. It is also nonrestrictive in practice, as in applications the econometrician
typically imposes a parametric restriction on F (ξ′ | ξ, x) that satisfy this con-
dition. Finally, we assume that the ENPV of starting the following period at
ξ′ conditional on ξ is increasing in ξ′: that is, firms would rather start the fol-
lowing period from a higher rather than lower ξ. This is an assumption on an
equilibrium object, but we see it as a mild one.7 Indeed, all equilibria of the
environment in Section 5 that we have computed exhibit this property.

2.2.1 The Incumbent’s Exit Decision

The incumbent commits to an exit decision before observing investment cost
shock ν. Therefore, it must make its decision on the basis of its expected con-
tinuation value conditional on it being active:

V̄ A
I (ξ) :=

∫
V A
I (ξ, ν) dFν . (8)

Recall VI(ξ, ρ) denotes the ENPV of an incumbent with scrap value ρ. Then

VI(ξ, ρ) = max

{
π(ξ) + ρ, V̄ A

I (ξ)

}
= max

χ∈{0,1}
χV̄ A

I (ξ) + (1− χ)[π(ξ) + ρ] . (9)

7This is a mild assumption for models that consider ξ’s with a “reasonable” payoff ordering,
such as the quality ladder model considered in Section 5.
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The implied conditional probability of an incumbent remaining active is

P
(
αI(ξ, ρ) = 1 | ξ

)
= Fρ

(
V̄ A
I (ξ)− π(ξ)

)
(10)

2.3 The Entrant’s Problem

Denote by V A
E (ξ−1, ν) the ENPV of a potential entrant that enters under public

state ξ−1 and draws investment cost shock ν. This function is characterized by

V A
E (ξ−1, ν) = max

x∈R+

{
−c(x, ν)+β

∫
ξ′1

W (ξ′1 | (−∞, ξ−1), F
σ) dF (ξ′1 | ξe, x)

}
, (11)

where ξe ∈ Ξ is an exogenously specified initial quality level for potential en-
trants. In our simulations below we assume that ξe = min(Ξ \ −∞).

Potential entrants either enter the market or perish. Therefore, their ENPV
given entry cost ϕ is

VE(ξ−1, ϕ) = max

{
0, V̄ A

E (ξ−1)− ϕ

}
= max

χ∈{0,1}
χ
[
V̄ A
E (ξ−1)− ϕ

]
(12)

where we have normalized the value of entrants’ outside option to zero and

V̄ A
E (ξ−1) :=

∫
V A
E (ξ−1, ν) dFν . (13)

The conditional probability of entry is

P
(
αE(ξ−1, ϕ) = 1 | ξ−1

)
= Fϕ

(
V̄ A
E (ξ−1)

)
(14)

2.4 Equilibrium

Definition 1. Let ΞI := (Ξ \ {−∞}) × ΞN̄−1. A Symmetric Markov Perfect
Equilibrium (SMPE) is a pair (V̄I , σ) where V̄I : ΞI → R and σ = (σx, αE, αI) are
such that

1. σx(ξ, ν) solves the right-hand side of

V A(ξ, ν) = max
x∈R+

{
π(ξ)− c(x, ν) + β

∫
ξ′1

W (ξ′1 | ξ, F σ) dF (ξ′1 | ξ1, x)
}

(15)

for all ξ ∈ ΞN and ν in the support of Fν , where W (ξ′ | ξ, F σ) is given by
equation (7).
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2. αI(ξ, ρ) solves problem (9) subject to (8) and (15), for all ξ ∈ ΞI and ρ in
the support of Fρ.

3. αE(ξ−1, ϕ) solves problem (12) subject to (13) and (11), for all ξ−1 ∈ ×ΞN̄−1

and ϕ in the support of Fϕ.

4. For all ξ ∈ ΞI , V̄I(ξ) =
∫
{αI(ξ, ρ)V̄ A

I (ξ) + (1 − αI(ξ, ρ))[π(ξ) + ρ]} dFρ

where V̄ A
I (ξ) is given by (8).

We define an equilibrium only in terms of incumbents’ integrated value
functions. This is due to the assumption, common in this literature, that firms
that choose to be inactive in the following period perish. As a result, when a
firm’s quality becomes ξ′ = −∞ (as a consequence of exit or no entry), that
firm’s continuation value is zero. Therefore, V̄I alone is sufficient to determine
firm behavior.8

We compute SMPEs as follows. We start with guesses for V̄I(ξ) and F σ(ξ′ |
ξ). With these two objects we can compute W (ξ′ | ξ, F σ). We then solve for
firms’ optimal investment and entry and exit decisions, i.e., we perform the
computations associated with conditions 1 to 3 in Definition 1. We update F σ

based on these decisions.9 The update to V̄I(ξ) follows from rewriting condition
4 of Definition 1 as

V̄I(ξ) = Fρ(V̄
A
I (ξ)− π(ξ))[V̄ A

I (ξ)− π(ξ)] + π(ξ) +

∫ ∞

V̄ A
I (ξ)−π(ξ)

ρ dFρ . (16)

For suitable distributions, e.g. the lognormal, the integral in this equation can
be written in closed form. We iterate on these steps until both V̄I and F σ con-
verge. As the firms’ objective function depends solely and continuously on
these objects, the Theorem of the Maximum implies that the policy functions
associated with the firms’ problem also converge. By the symmetry assump-
tion, it is sufficient to compute V̄I(ξ) and F σ(ξ′ | ξ) for ξ ∈ ΞR. As shown in
Pakes and McGuire (1994), the reduced state space ΞR grows in the number of
firms as a polynomial of order |Ξ| rather than exponentially. In the numerical
examples presented in Section 5, symmetry reduces the cardinality of the state
space from 165 = 1, 048, 576 to 62, 016.
8Note also that we do not define V̄I on ΞR but rather on ΞI . Similarly we do not define the
policy functions on the reduced state space. This is for the sake of precision, as strategies must
be complete contingent plans. However, the discussion in section 2.1 applies. In particular,
when computing equilibria we do exploit symmetry, as discussed in this section.

9Updating Fσ involves an integral with respect to Fν – see equation (6). The choice of integral
approximant will determine the values of ν for which we compute firms’ optimal investment
choices.
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3 Estimation via Recursive Equilibrium Conditions

In this section we discuss estimators based on firms’ optimal behavior, i.e. be-
haviour consistent with conditions 1 to 3 in Definition 1. For the purpose of
discussing estimation we let the investment cost function depend on parame-
ters θx, the distribution of scrap values depend on parameters θρ, and the dis-
tribution of entry costs depend on parameters θϕ. We denote these parameters
collectively by θ. We also use the notation θ−ϕ := (θx,θρ). Our goal is to esti-
mate θ.

Suppose we can obtain an estimate (up to parameters) ̂̄VI(ξ;θ−ϕ) of the ex-
ante value function V̄I(ξ).10 Suppose we also have estimates of F (ξ′ | ξ, x) and
F σ(ξ′ | ξ), defined in equation (6). These estimates allow us to set up an empir-
ical analog of firms’ investment problem:

max
x∈R+

{
π(ξ)− c(x, ν; θx) + β

∫
ξ′1

Ŵ (ξ′1 | ξ,θ−ϕ) dF̂ (ξ′1 | ξ1, x)
}

, (17)

where Ŵ (ξ′1 | ξ,θ−ϕ) is given by (7) substituting ̂̄V I(ξ;θ−ϕ) for V̄I(ξ) and F̂ σ for
F σ. The solution to problem (17) yields a predicted level of investment at state
(ξ, ν) under θ−ϕ. Multiple solutions over the state space provide an estimate of
V̄ A
I (ξ) and, via (10) and (14), the probability of exit by incumbents and entry by

inactive firms.
All recursive estimators compute model-implied investment and probabil-

ities of entry and exit in this way. They differ in how they exploit that infor-
mation to estimate θ. Our numerical results have led us to favor an Indirect
Inference estimator, which we now discuss.

3.1 Indirect Inference

3.1.1 Investment

We predict investment as the solution to (17) for ξ’s observed in the data and
randomly drawn ν ∼ Fν . We take K draws from Fν for each of the M obser-
vations, for a total of KM simulated investment decisions. Denote these by

10We discuss alternative estimators of V̄I(ξ) in Section 3.2. Observe that our notation indicates
that these value-function estimates do not depend on θϕ. We discuss why below.
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σx(ξj, νj;θ−ϕ), j = 1, . . . , KM . We estimate the linear specification

σx(ξj, νj;θ−ϕ) =
Bx∑
k=1

λx
kΨ

x
k(ξj) + ζxj j = 1, . . . , KM. (18)

for a set of basis functions chosen by the econometrician {Ψx
k}B

x

k=1. This yields

λ̂x(θ−ϕ) :=
[
λ̂x
1(θ−ϕ) . . . λ̂x

Bx(θ−ϕ) Sζx(θ−ϕ)
]

where Sx
ζ =

[
(N −Bx)−1

∑M
j=1(σ

x(ξj, νj;θ−ϕ)−
∑Bx

k=1 λ̂
x
kΨ

x
k(ξj))

2
]1/2

is an esti-
mate of the standard deviation of ζxj .

Turning to investment decisions observed in the data {xi}Mi=1, we estimate
the linear specification

xi =
Bx∑
k=1

γx
kΨ

x
k(ξi) + ηxi i = 1, . . . ,M. (19)

to obtain γ̂x :=
[
γ̂x
1 , . . . , γ̂

x
Bx , Sx

η

]
.

3.1.2 Exit

We compute the model-implied probability that firms choose to exit in state ξ

when the structural parameters are θ−ϕ:

P(Exit | ξ;θ−ϕ) = 1− Fρ

(̂̄V A

I (ξ;θ−ϕ)− π(ξ);θρ

)
. (20)

where ̂̄V A

I (ξ;θ−ϕ), the integral of V̂ A
I (ξ, ν;θ−ϕ) with respect to ν, is estimated by

averaging over problem (17) solved on a carefully selected vector of ν’s.
We use these conditional probabilities to estimate the linear specification

P(Exit | ξ;θ−ϕ) =
BE∑
k=1

γE
k Ψ

E
k (ξi) + ζEi , (21)

for basis functions {ΨE
k (ξ)}B

E

k=1. This yields

λ̂E(θ−ϕ) =
[
λ̂E
1 (θ−ϕ) . . . , λ̂

E
BE(θ−ϕ)

]

14



Turning to the data, we estimate the linear probability model

1{ξ′i = −∞} =
BE∑
k=1

γE
k Ψ

E
k (ξi) + ηEi , (22)

using data on active firms only. This yields γ̂E =
[
γ̂E
1 . . . γ̂E

BE

]
. Note that

here we do not keep track of an estimate of the standard deviation of the error
term. We use a linear probability model because it is simple to estimate.

It may seem more natural to simulate exit decisions and use those to es-
timate (22) on simulated data. However, the discreteness of the outcome vari-
able would cause λ̂E(θ−ϕ) to be discontinuous in θ−ϕ. Moreover, we know from
the theory of linear regression that both estimators have the same probability
limit.11

3.1.3 Entry

Our treatment of entry decisions is analogous to how we handle exit decisions.

Having estimated ̂̄V A

E(ξ−1) by solving (17) repeatedly to integrate V̂ A
E (ξ−1, ν)

with respect to ν, we compute

P(Entry | ξ,θ) = Fϕ

(̂̄V A

E(ξ−1;θ−ϕ);θϕ

)
(23)

and estimate the linear specification

P(Entry | ξ;θ) =
BN∑
k=1

γN
k ΨN

k (ξi) + ζNi , (24)

for basis functions {ΨN
k (ξ)}B

N

k=1 (the superscript N indicating entry) to obtain

λ̂N(θ) =
[
λ̂N
1 (θ) . . . λ̂

N
BN (θ)

]

11Indeed, let e = Y − E[Y | X]. Then

(X ′X)−1X ′Y = (X ′X)−1X ′[E[Y | X] + e] = (X ′X)−1X ′E[Y | X] + op(1) ,

where the last equality follows from E[e | X] = 0. Also see Collard-Wexler (2013) for a use
of conditional expectations of discrete choices in Indirect Inference estimation of a dynamic
discrete game.
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Turning to the data, we estimate the linear probability model

1{ξ′i > −∞ | ξi = −∞} =
BE∑
k=1

γE
k Ψ

E
k (ξi) + ηEi , (25)

to obtain γ̂N =
[
γ̂N
1 . . . γ̂N

BN

]
.

3.1.4 Estimation Problem

For a positive definite weight matrix Ω, the Indirect Inference estimator is

θ̂II = argmin
θ∈Θ

[λ̂(θ)− γ̂]′Ω[λ̂(θ)− γ̂] (26)

where

λ̂(θ) =
[
λ̂x(θ−ϕ)

′ λ̂E(θ−ϕ)
′ λ̂N(θ)′

]′
and γ̂ =

[
(γ̂x)′ (γ̂E)′ (γ̂N)′

]′
Note that the objective function and the estimator both depend on γ̂, Ω, and the
first-stage estimates ̂̄V I(ξ;θ−ϕ), F̂ (ξ′ | ξ, x), and F̂ σ(ξ′ | ξ). We do not highlight
that dependence in our notation as this and subsequent sections do not concern
themselves with the dependence of the estimator on those objects. We refer to
the estimator defined by (26) as the Recursive Indirect Inference estimator, or
Rec-II for short.12

The intuition for the Rec-II estimator is the following.13 If the policies ob-
served in the data are a Markov Perfect Equilibrium, they must satisfy the re-
cursive equilibrium conditions in Definition 1. Therefore, if we solve the right-
hand side of the Bellman Equation using transitions and value functions im-
plied by σ̂, we must obtain σ̂ back. One could try to estimate the structural pa-
rameters by directly matching the model-implied policies and σ̂. Along these
lines, Srisuma (2013) proposes matching the observed conditional distribution
of investment and that implied by firms’ optimality conditions. Unfortunately,
computing the model-implied conditional distribution is computationally very
demanding. Moreover, the resulting estimator is based on a non-smooth ob-
jective function because the simulated distribution is not smooth for a finite

12As usual, using the analytical gradient of the objective function in problem (26) significantly
accelerates the computation of the solution to that problem. We provide the required calcula-
tions in Appendix A.4.

13As discussed in the introduction, this intuition underpins not only the Rec-II estimator but all
estimators based on recursive equilibrium conditions.
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number of simulated draws. The Rec-II estimator instead matches features of
observed and model-implied distributions, which yields a smooth objective.
The estimator is sufficiently cheap to compute in empirically-relevant models
and, as we show in section 5, can substantially outperform commonly-used al-
ternatives.

We close this section by discussing alternative recursive estimators. Focus-
ing on investment, a simple alternative is the nonlinear least squares estimator

θ̂NLLS := argmin
θ

N∑
i=1

(
xi − Eν [σ

x(ξ, ν;θx) | ξ]
)2

. (27)

Yet another alternative estimator would minimize the distance between the
conditional expectation of investment and its model-predicted equivalent, i.e.

θ̂ALS := argmin
θ

∑
ξ

(
E[xi | ξ]− Eν [σ

x(ξ, ν;θx) | ξ]
)2

, (28)

which can be seen as the continuous-control analog of Pesendorfer and Schmidt-
Dengler (2008). Furthermore, interpreting (28) as a method of moments estima-
tor allows for extensions to entry and exit by adding conditions that match
empirical and model-implied entry and exit moments.14

We prefer θ̂II for two reasons. First, θ̂II is computationally cheaper than
θ̂NLLS and θ̂ALS , as it requires fewer evaluations of σx(ξ, ν;θx) per observation
than would be needed to approximate the integral Eν [σ

x(ξ, ν;θx) | ξ] to satis-
factory precision. Second we found θ̂II outperforms both θ̂NLLS and θ̂ALS in
a model without entry and exit. We report results for this simpler model in
Appendix D.

3.2 Estimating Integrated Value Functions

In this section we present a closed form solution for V̄I(ξ;θ−ϕ) under the as-
sumption that |Ξ| < ∞. We use this closed form in recursive estimators as an
alternative to the forward simulation used in BBL.

Let P (ξ′ | ξ, a) denote the probability that a firm’s quality in t + 1 is ξ′ con-
ditional on its current quality being ξ and its action being a = (α, x), where the
notation is analogous to that in Section 2. Moreover, let ΞR

I denote the set of

14This is related to the “aggregate moments” estimator described in Bajari et al. (2007, p. 1363),
though (28) matches conditional average investment whereas BBL suggest pooling across
states.
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states in the reduced state space in which firm 1 is active, i.e., ΞR
I := {ξ ∈ ΞR :

ξ1 > −∞}. Let V̄I = [V̄I(ξ) : ξ ∈ ΞR
I ] be a vector stacking the incumbents’

integrated value function across states in ΞR
I . We show in appendix A.3 that V̄I

satisfies
V̄I = π −K(θx) +Σ(Fρ) + βM (P )V̄I (29)

where

K(θx) =

[
PA
I (ξ)

∫
c(σx(ξ, ν), ν;θx) dFν : ξ ∈ ΞR

I

]
(30)

Σ(Fρ) =

[
[1− PA

I (ξ)]E[ρ | ρ > F−1
ρ (PA

I (ξ));θρ] : ξ ∈ ΞR
I

]
(31)

where PA
I (ξ) = P(αI(ξ, ρ) = 1 | ξ) is the probability that the incumbent chooses

to be active in state ξ and M (P ) is the transition matrix implied by the policy
function σ, i.e.,15

M (P ) =
[
Pσ(ξl | ξk) : 1 ≤ l, k ≤ |ΞR

I |
]

(32)

where

Pσ(ξ′|ξ) =
N∏
j=1

P σ(ξ′j | ξ) =
N∏
j=1

∫
P (ξ′j | ξj, σ(ξj, ε)) dGε . (33)

Equations (29) to (33) imply that we can estimate V̄I up to parameters by es-
timating the probabilities PA

I (ξ) and P σ(ξ′ | ξ) and the investment policy func-
tion σx(ξ, ν). The probabilities are directly estimable from the data on firms
characteristics. To identify and estimate σx(ξ, ν) we follow Bajari et al. (2007).
Their argument implies, in the case in which σx(ξ, ν) is decreasing in ν, that

σx(ξ, ν) = F−1
X (1− Fν(ν) | ξ) , (34)

where FX(x | ξ) is the distribution of investment conditional on ξ, which is
identified. That is, the policy function is identified by the quantiles of the con-
ditional distribution of investment.16 Using this, the integral in equation (30)

15We order states in ΞR and ΞR
I lexicographically, where firm 1 takes precedence over firm

2, who takes precedence over firm 3, so on and so forth. We do so by interpreting ξ =
(ξ1, . . . , ξN̄ ) as a number in base |Ξ|.

16 This argument rests on the maintained assumption that Fν is known. If Fν is known up to
parameters θν , (34) must account for that dependence. This in turn implies that K(θx) in
equation (30) also depends on θν . It can then be seen from equation (29) that the integrated
value function ceases to be linear in the structural parameters even when the investment cost
function is linear in θx and the scrap value is deterministic (as in Bajari et al. (2007)).
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can be approximated by
∑N

i=1 ωic(F
−1
X (1 − Fν(νi) | ξ), νi;θx), for judiciously

chosen weights ωi and nodes νi. Note that in principle this argument requires
estimating investment quantiles at each element of ΞR

I , which is infeasible in
practice. We estimate F−1

X (1 − Fν(νi) | ξ) as the predicted values from quantile
regressions of investment on features of ξ.

Equation (29) allows us to solve efficiently for V̄I(ξ;θ−ϕ). That system of
equations can be essentially solved only once, as we can compute a decomposi-
tion of I − βM(P ) and store it in memory. Then, as we vary θ−ϕ, we only need
to recompute the expected flow profits and solve the resulting system using the
stored matrix decomposition.17

4 A Review of the BBL Inequality Estimator

In this section we review the inequality estimator proposed by Bajari et al.
(2007), which is the main point of comparison for the Rec-II estimator proposed
in Section 3.

The expected discounted stream of profits of an incumbent playing strategy
σ̃I = (σ̃x, α̃I) when all its competitors play the strategy σ = (σx, αI , αE) is given
by

V̄I(ξ; σ̃
I , σ,θ−ϕ) = E

{
τe∑
t=0

βt [π(ξt)− c(σ̃x(ξt, νt), νt;θx)] + βτeρτe

∣∣∣∣ξ0 = ξ

}
(35)

where τe is the incumbent’s endogenous and potentially infinite exit date and
the public state evolves according to the probability distribution induced by
(σ̃I , σ). The expected discounted stream of profits of a potential entrant playing
strategy σ̃E = (σ̃x, α̃I , α̃E) when all its competitors play strategy σ is

V̄E(ξ; σ̃
E, σ,θ) =

∫ ∫
α̃E(ξ−1, ϕ)v(ϕ, ν, ξ−1;θ−ϕ) dFν dFϕ(θϕ)

17If the cost of investment is linear in parameters and either the scrap value is determin-
istic (as in Bajari et al. (2007)) or there is no exit decision (as in Hashmi and van Biese-
broeck (2016) and Appendix D), equation (29) implies that V̄I is linear in parameters, i.e.,
V̄I = [I − βM(P )]−1Xθ−ϕ for some matrix X . In this case there are additional computa-
tional savings, as one can store the solution A to [I − βM(P )]A = X in memory and only
compute Aθ−ϕ as the parameters change.
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where

v(ϕ, ν, ξ−1;θ−ϕ) := −ϕ− c(σ̃x(−∞, ξ−1, ν), ν;θx)

+ β

∫ ∫
V̄I(ξ

′; σ̃E, σ,θ−ϕ) dF
σ(ξ′−1 | (−∞, ξ−1)) dF (ξ′1 | ξ1, σ̃x(−∞, ξ−1, ν))

A symmetric strategy profile (σ, . . . , σ) is a Symmetric Markov Perfect Equi-
librium only if, for all ξ and σ′,

V̄E(ξ;σ, σ,θ) ≥ V̄E(ξ;σ
′, σ,θ) and V̄I(ξ;σ, σ,θ−ϕ) ≥ V̄I(ξ;σ

′, σ,θ−ϕ) . (36)

Bajari et al. (2007) base their estimator on the equilibrium conditions (36).18 Let
H be a distribution over the space of pairs of the form (ξ, σ′). Define

Q(θ, σ) :=

∫ (
min

{
g(ξ, σ′;σ,θ), 0

})2

dH(ξ, σ′) , (37)

where g(ξ, σ′;σ,θ) := V̄ (ξ;σ, σ,θ)− V̄ (ξ;σ′, σ,θ).
Let E(θ) be the set of SMPEs when the parameters of the model are given

by θ and let θ0 denote the true parameter value. If σ ∈ E(θ0), the equilibrium
conditions above imply that Q(θ0, σ) = 0.

Assumption 2 (Identification). For any θ,θ′ ∈ Θ, E(θ) ∩ E(θ′) = ∅.

Under assumption 2, σ ∈ E(θ0) ⇒ σ /∈ E(θ′). Therefore, if θ′ ̸= θ0, then there
must exist (ξ, σ′) for which g(ξ, σ′;σ,θ′) < 0. It follows that, for an appropriate
choice of H , Q(θ′, σ) > 0.19

Bajari et al. (2007) propose estimating the structural parameters of the model
by minimizing a sample analog of (37). In particular, given a set of {(ξi, σ′

i)}
nI
i=1

18Condition (36) is slightly weaker than Markov Perfect Equilibrium as it allows violations of
optimality at seats of measure zero (according Fρ and Fϕ).

19To be more precise, Q(θ′, σ) > 0 requires that g(ξ, σ′;σ,θ′) < 0 on a set of positive H-measure
for all θ′ ̸= θ0. We can attach this condition to our definition of MPE. Given a measure µ
on the set of tuples (ξ, σ′), say that (σ, . . . , σ) is a symmetric MPE if g(ξ, σ′;σ, θ0) < 0 with
zero µ-measure. Then choose H such that µ is absolutely continuous with respect to H . If
θ′ ̸= θ0, assumption 2 implies that g(ξ, σ′;σ, θ′) < 0 with positive µ-measure. This implies that
g(ξ, σ′;σ, θ′) < 0 with positive H-measure, otherwise absolute continuity of µ with respect to
H would be violated. Thus, Q(θ′, σ) > 0. This hints at difficulties with the BBL approach: the
measure H has to be rich, in the sense of µ ≪ H , where µ is itself rich enough that we are
willing to define MPE on its basis. If H is not sufficiently rich, the equilibrium conditions may
be violated at a set of positive µ-measure that is neglected by H . In this case Q(θ′, σ) = 0.
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pairs and an estimate of the strategy profile σ̂, they propose minimizing

Q̂(θ, σ̂) :=
1

nI

nI∑
i=1

(
min

{
g(ξi, σ

′
i; σ̂,θ), 0

})2

i = 1, . . . , nI .

Evaluating this objective requires estimates of V̄ (ξ, σ′, σ̂,θ). Bajari et al. (2007)
propose obtaining these estimates by forward simulation. As they note, lin-
earity of the value function with respect to θ significantly reduces the compu-
tational burden of forward simulation. In fact, under linearity there exists a
function Λ̄(ξ;σ′, σ) such that V̄ (ξ;σ′, σ,θ) = Λ̄(ξ;σ′, σ)θ and forward simula-
tion need not be repeated as θ varies. As established by equation (29), however,
value functions are generally not linear in θ when scrap values are random.
Nonetheless, we will show in Section 5.3 that nonlinearity arising from exit be-
havior does not add substantive computational burden.

5 Monte Carlo Simulations

In this section we first introduce the model we use as a testing ground for the
estimators based on recursive equilibrium conditions and BBL. The model is in-
spired by and extends the Hashmi and van Biesebroeck (2016) model of R&D in
the automobile industry to allow for entry and exit. After presenting the model
parameterization we adopt in simulation exercises, we provide implementa-
tion details for the different estimators. We end by presenting results from a
numerical study.

5.1 The Model

The model we simulate is a special case of the model discussed in Section 2. The
market is populated by single-product firms characterized by product quality
ξ. Each period, firms set prices and invest to improve product quality.

5.1.1 Static Price Competition

Suppose there are J firms in the market, indexed by j = 1, . . . , J . Consumer i
derives conditional indirect utility uij from purchasing firm j’s product, where

uij =

ϵout
i + (1− ς)εi0 if j = 0

αpj + ξj + ϵin
i + (1− ς)εij if j = 1, . . . , J

. (38)
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In (38), j = 0 denotes the no-purchase option and pj denotes good j’s price.20

Goods are grouped into two nests, one containing all inside goods (i.e, those
produced by one of the J firms) and one containing the no-purchase option.
The εij’s are independent and identically distributed Type 1 Extreme Value ran-
dom variables. The nest-level disturbances ϵout

i and ϵin
i follow the unique distri-

bution such that ϵg
i + (1 − ς)εij , for g = {in, out}, is also Type 1 Extreme Value

distributed – see Cardell (1997). This nested-logit specification yields market
share formulas

sj(p, ξ) =
exp

(αpj+ξj
1−ς

)
Dς(1 +D1−ς)

,

where D =
∑J

j=1 exp
(

αpj+ξj
1−ς

)
. Prices are modeled as the outcome of Nash-

Bertrand competition. That is, firm j solves

max
pj

πj(pj,p−j, ξ) := M(pj −mc(ξj))sj(p, ξ) (39)

taking p−j and ξ as given. In problem (39), mc(ξj) denotes the firm’s constant
marginal cost of production, specified as

mc(ξj) = exp(θc1 + θc2ξj) ,

and M is the number of consumers in the market. For a fixed vector ξ, unique-
ness and existence of the price equilibrium follow from results in Caplin and
Nalebuff (1991). The equilibrium p∗(ξ) satisfies the system of first-order condi-
tions

∂sj(p, ξ)

∂pj
(p∗j −mc(ξj)) + sj(p, ξ) = 0 j = 1, . . . , J

inducing profits π(ξ) := M(p∗j(ξ)−mc(ξj))sj(p
∗(ξ), ξ).

5.1.2 The Investment Decision

Firms invest to affect the quality of their product in the following period. Qual-
ity satisfies the conditions laid out in Section 2. It belongs to the set Ξ =

{−∞, ξm, ξm + δ, . . . , ξM − δ, ξM}. If ξm < ξ < ξM , ξ can increase by δ, remain
unchanged, or decrease by δ. Quality only transitions to −∞ as a result of exit.
Each firm’s quality is affected by two shocks, one positive and one negative,
which are independent from one another and across firms. The negative shock
lowers quality by δ with exogenous probability θt1 ∈ (0, 1). The positive shock

20As all firms offer a single product, we let j denote interchangeably a firm and its product.
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instead increases quality by δ with probability up(ξ, x). This can be interpreted
as the probability of R&D success, which is allowed to depend on a firm’s in-
vestment and quality (but not on competitors’). For instance, in the parameter-
ization below up(ξ, x) is an increasing function of x and a decreasing function
of ξ. This captures the notions that investment increases the probability of an
R&D success and that it is harder to improve on a high-quality product.

Given independence of the shocks, quality transition probabilities satisfy21

P (ξ′ | ξ, x) =



θt1[1− up(ξ, x)] if ξ′ = ξ − δ

1− θt1 − up(ξ, x)(1− 2θt1) if ξ′ = ξ

(1− θt1)up(ξ, x) if ξ′ = ξ + δ

0 otherwise

(40)

Given this structure, firms choose investment to maximise the present-discounted
stream of profits. They balance expected higher product quality with an imme-
diate cost of investment c(x, ν), where ν denotes the private investment cost
shock.

We note that the structure of quality transitions in (40) implies that the in-
vestment first-order condition can be written as

∂c(x, ν)

∂x
= β

∂up(ξ, x)
∂x

∆W (ξ) (41)

where ∆W (ξ) is the expected increase in the continuation value due to a posi-
tive shock, i.e.,22

∆W (ξ) := (1− θt1)[W (ξ + δ | ξ)−W (ξ | ξ)] + θt1[W (ξ | ξ)−W (ξ − δ | ξ)] .

Fix ξ and suppose that there exists ν such that σ(ξ, ν) > 0 – which, of course,
is implied by observing strictly positive investment in the data. Assume further
that ∂xc(x, ν) > 0 for all (x, ν). Because σ(ξ, ν) > 0, the first-order condition
must hold with equality – i.e., equation (41) must hold. Therefore, it must be
the case that ∆W (ξ) > 0. This has two implications. First, this condition is a
restriction on the equilibrium value function and by itself provides restrictions
on the structural parameters. Second, under the additional assumption that

21To ensure the bounds of Ξ are satisfied, the probability that ξ′ = ξ at maximum (minimum)
quality is defined to be the complement of the probability of ξ decreasing (increasing).

22Again, this expression needs to be adjusted slightly if the focal firm is at either end of the set
of possible quality levels.

23



up(ξ, x) is strictly concave in x, the firm’s investment problem is globally strictly
concave at that ξ for all ν. This in turn implies that the investment first-order
conditions uniquely determine optimal investment. We thus obtain sufficiency
of the first-order condition without the assumption that W (ξ | ξ) is increasing
in ξ, which is required in Proposition 1.

The local structure of the transitions (40) also has positive computational
implications. It implies that the transition matrix M(P ) in equation (32) is
banded. A banded matrix is a sparse matrix whose non-zero entries are con-
fined to a band around the main diagonal. Importantly, the LU decomposition
of a banded matrix has banded components. This implies substantial compu-
tational savings in both the computation of the LU decomposition and the sub-
stitutions used to compute the solution to the linear system (29).23

We adopt a parameterization very similar to that in Hashmi and van Biese-
broeck (2016). Specifically, we let

up(ξ, x) := exp(− exp(−θt2 log(1 + x)− θt3ξ − θt4ξ
2)) (42)

where x denotes the firm’s investment in R&D. This is exactly as in HvB. The
functional form (42) allows for the notion that it is harder to improve on a high-
quality product. Indeed, with the parameter values in Table 1, the quadratic
term θt3ξ + θt4ξ

2 decreases in ξ. Other forms of dependence are possible. More-
over, we parameterize the cost of investment as

c(x, ν) = θx1x+ θx2x
2 + θx3xν .

HvB have an additional cubic term that we omit. Note that the cost shock di-
rectly interacts with the investment level and hence affects the optimal invest-
ment choice. This rationalizes that two firms facing the same quality vector ξ

may optimally choose different levels of investment. We further assume, fol-
lowing Hashmi and van Biesebroeck (2016), that ν ∼ N(0, 1).24

23Note that it is important for this observation that equation (29) refers only to incumbent states.
The matrix of transitions over all states includes non-zero entries in its first few columns
(i.e., those that pertain to transitions to ξ = −∞), making its (lower) bandwidth large, and
reducing the computational savings. The full computational savings are thus a consequence
of both the local nature of transitions and the assumption that exiting firms perish.

24Observe that the parameterization in HvB violates both the positivity of marginal costs and
the concavity of the up(·) function. However, these violations are mild. First, at the levels
of investment we simulate and at the true parameters, negative marginal cost of investment
only happens for extreme negative values of ν, which occur with very low probability. Sec-
ond, HvB’s functional form for the up(·) function violates concavity only at very low levels
of investment. Nevertheless, better parametric choices can be made to ensure that the invest-
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5.2 Parameterization

Table 1 reports parameters governing the data generating process. We consider
a rather data-rich environment, with data from 100 separate markets recorded
for 40 periods. We fix N̄ = 5 in each simulated market, in line with simula-
tions in HvB.25 Incumbent product quality can take on fifteen values, from -1.4
to 1.4 in increments of 0.2. Firms are characterized by constant marginal costs
mcj = exp(2.47) – namely, θc1 = 2.47, θc2 = 0. The probability of a quality
downgrade shock is θt1 = 0.347, and the probability of a quality upgrade shock
is increasing in own investment (θt2 = 0.162) but decreasing (at an increasing
rate) in own quality level (θt3, θt4 < 0). Investment costs are convex (θx1, θx2 > 0)
in investment and increasing in the ‘shock’ term (θx3 > 0). Our parameteriza-
tion differs somewhat from that in Hashmi and van Biesebroeck (2016). For in-
stance, we assume a lower probability of quality downgrade shock and a higher
elasticity of quality improvement to own quality. We also consider different
values for investment cost parameters. For instance, HvB report a negative θx2.
We impose a positive value to ensure convexity of the investment cost function.
The changes in parameter values are not instrumental for the qualitative results
we report in section 5.4.

Finally, we have to take a stance on entry cost and scrap value distributions,
which are not included in HvB. We assume both are lognormal distributions.
Scrap values have lower mean and standard deviation than entry costs.26

5.3 Implementation Details for Different Estimators

We compare the performance of four estimators. The first is Indirect Inference,
the estimator proposed in Section 3, equation (26). The others are three variants
of the BBL estimator presented in Section 4.

ment cost and up functions retain desirable properties. For instance, one may assume that
log ν ∼ N(0, 1) and that up(·) is derived from an exponential, rather than a Gumbel, CDF. We
plan to adopt that parameterization in future revisions of this paper.

25In their empirical analysis, Hashmi and van Biesebroeck (2016) aggregate data to have a sin-
gle market with 14 firms for the 1982-2006 period. When computing the equilibrium of the
dynamic game, however, they restrict the number of firms to 5 to reduce computational bur-
den. See Hashmi and van Biesebroeck (2016, Footnote 30). As a second point of comparison,
Ryan (2012) collected a total of 517 market-year pairs (an unbalanced panel of 27 markets over
19 years), with the number of firms in a market-year ranging from 1 to 20 and averaging 4.75.
We repeat the estimator comparison for a data structure akin to Ryan’s in Appendix C.

26Table 1 details the distribution of scrap values and entry costs before they are scaled to have
the same order of magnitude as firm profits. Scaling is implemented by multiplying these
shocks by the average of π(ξ)/(1− β) across states.
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Table 1: Exercise Parameters

Parameter Value

Data Structure
Number of Markets 100
Number of Periods 40
Maximum Number of Firms 5
Own State Space [-∞, -1.4, -1.2, ... , 1.2, 1.4]
Model Parameters
Number of Households 1.0e8
Discount Factor 0.925
Nesting Parameter 0.5
Marginal Utility of Income -0.222
Marginal Cost Parameters [2.47, 0.0]
Investment Cost Parameters [2.625, 1.624, 0.5096]
Transition Probability Parameters [0.347, 0.162, -1.0, -0.285]
Scrap Value Distribution logN(-1.0, 0.75)
Entry Cost Distribution logN(0.625, 0.5)
II Estimator
Number of Investment Repetitions 5
Weight Matrix Bootstrap
Number of Bootstrap Samples 1000
Number of Inequalities 5000
BBL Estimators
Number of Simulated Paths 500
Simulation Horizon 80

This table reports parameters used in our Monte Carlo exercise.
Data Structure
The number of markets and periods define the size of the simulated balanced panel.
“Own State Space” denotes the values ξj can take for each firm.
II Estimator
Number of investment repetitions: number of simulated investment cost shocks per choice.
Weight matrix: we use a bootstrap estimator of the inverse of the variance-covariance matrix of the estimation mo-
ments.
BBL Estimators
Number of inequalities: number of equilibrium conditions included in each BBL objective.
Number of simulated paths: number of simulated histories used in simulating value functions.
Simulation horizon: number of periods for which paths are simulated.
Deviation details are discussed in the main text.
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Both Rec-II and the BBL inequality estimator requires estimates of policy
functions. We obtain those as follows. From equation (34) we know that the
investment policy function satisfies σx(ξ, ν) = F−1

X (1 − Fν(ν) | ξ). Due to this
result, we estimate the investment policy function by estimating a set of quan-
tile regressions of investment on functions of ξ. Formally, let τ ∈ (0, 1) and
let ντ be the τ -th quantile of Fν . Denote by χ̂x

τ the quantile regression coeffi-
cient estimate associated with the τ -th conditional quantile. Our estimate of the
investment policy function is

σ̂x(ξ, ντ ) = fx(ξ)′χ̂x
τ ,

where fx(ξ) includes dummies for the firm’s own quality, the number of active
firms in the market, the rank of the firm’s quality in the market, the mean qual-
ity in the market, and the maximum quality in the market.27 With regards to
entry and exit decisions, we estimate conditional probabilities of firms choos-
ing to be active. We do so by estimating logistic regressions of those decisions
on functions of ξ. Let PE(ξ−1) := P(αE(ξ−1, ϕ) = 1) and PI(ξ) := P(αI(ξ, ρ) = 1)

denote the conditional probabilities that entrants and incumbents choose to be
active, respectively. Our estimates of these probabilities are

P̂E(ξ−1) = Λ
(
fE(ξ)′χ̂E

)
P̂I(ξ) = Λ

(
f I(ξ)′χ̂I

)
.

where Λ denotes the logistic CDF and χ̂E and χ̂E denote the logistic regression
coefficient estimates. The vector fE(ξ) includes dummies for the number of
firms and the average quality in the market, whereas f I(ξ) includes dummies
for the number of firms and the firm’s own quality.

The BBL variants we consider differ in the construction of the deviations
from these policies, which we denote as {σ̃x(ξ, ντ ), P̃E(ξ−1), P̃I(ξ)}. Let i index
a deviation. In what we term Asymptotic BBL we draw χ̃i ∼ N(χ̂, Σ̂χ) for each
i. We then form deviations as

σ̃x
i (ξ, ντ ) = fx(ξ)′χ̃x

iτ ; P̃E
i (ξ−1) = Λ

(
fE(ξ)χ̃E

i

)
; P̃I

i (ξ) = Λ
(
f I(ξ)χ̃I

i

)
.

27This is similar to the specification that HvB adopt to estimate the investment policy function.
We adopt a specification that is more flexible with respect to own quality and omits higher
order moments of the distribution of quality in a market, as we simulate a dataset with fewer
firms per market.
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In what we term Multiplicative BBL we form deviations as

σ̃x
i (ξ, ντ ) = ιif

x(ξ)′χ̂x
τ ; P̃E

i (ξ−1) = Λ
(
ιif

E(ξ)χ̂E
)
; P̃I

i (ξ) = Λ
(
ιif

I(ξ)χ̂I
)
,

where ιi ∈ {.95, .975, 1.025, 1.05, 1.075} and we use all of these values of ιi for
each public state included in the BBL inequalities. This is HvB’s approach.28

Lastly, in what we term Additive BBL we draw ois ∼ N(0, 0.5) for each inequal-
ity i and simulated decision s. We then form deviations as

σ̃x
is(ξ, ντ ) = fx(ξ)′χ̂x

τ+oxis; P̃E
is(ξ−1) = Λ

(
fE(ξ)χ̂E+oEis

)
; P̃I

is(ξ) = Λ
(
f I(ξ)χ̂I+oIis

)
.

Given estimated policy functions and deviations, typical implementations
of the BBL inequality estimator compute value functions by forward simula-
tion. As shown by equation (29), the incumbent value function depends on the
conditional expectation of scrap values which causes the value function to be
non-linear in model parameters. This nonlinearity increases the computational
cost of the forward simulation routine, as the discussion at the end of section 4
no longer applies.

However, in the model we consider here, it is still the case that the forward
simulation routine can be performed essentially once. To see this, note that we
can define the exit policy as a function of a U [0, 1] random variable by means
of a change of variable: σ̌I(ξ, τ) := σI(ξ, F−1

ρ (τ)). It follows that σ̌I(ξ, τ) =

1{τ ≤ PI(ξ)}.29 We thus take τ ∼ U [0, 1] draws and use those to simulate
exit decisions: incumbents remain active if and only if τ ≤ P I(ξ). As we vary
structural parameters, these simulations do not need to be repeated. All that
needs to be recomputed is the scrap value that accrues to firms when they do
decide to exit, which is F−1

ρ (τ ;θρ), when τ > PI(ξ). The cost of repeatedly
calling F−1

ρ is typically dwarfed by the cost of repeating the simulation.

5.4 Monte Carlo Results

This section compares the performance of the II estimator and the three BBL
alternatives outlined in section 5.3. We fix the computational budget across
estimators to be the same. Namely, we set the number of inequalities in the
BBL estimators to equalize their runtime to the runtime of the II estimator.
28Because this approach generates 5 policy deviations per initial state, we consider nI/5 initial

states to obtain nI inequalities.
29Indeed, σ̌I(ξ, τ) = σI(ξ, F−1

ρ (τ)) = 1{F−1
ρ (τ) ≤ V̄ A

I (ξ)−π(ξ)} = 1{τ ≤ Fρ(V̄
A
I (ξ)−π(ξ))} =

1{τ ≤ PI(ξ)} = PI(ξ).
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Table 2 lists true parameter values, along with averages of estimates and
standard deviations for the four estimators over 500 simulations.

Of the four estimators, the II estimator evidently performs the best: aver-
ages are close to the true parameters, with smaller standard deviation. All BBL
estimators display substantial bias. Figures 1 and 2 present the distribution of
parameter estimates for each algorithm; vertical dotted lines represent true pa-
rameter values. The II estimates are correctly centered around the true values.
The distribution of θx is close to Gaussian. The distributions of the remain-
ing parameters display some skewness.30 BBL estimators, on the other hand,
are centered around wrong values, displaying substantial bias. BBL performs
poorly for all parameters, but seems to have a particularly difficult time esti-
mating θx.31

The relative performance of the different estimators is a consequence of the
differences in the objective functions that define them. We illustrate this by
analysing the shape of each objective function in a neighbourhood of the true
parameters for a single simulated dataset. To do so, we plot slices of the objec-
tive function by varying one parameter at a time while holding the others fixed
at their true values. To render the shape of different objective functions compa-
rable, we normalize objective values on the parameter grid by dividing each by
the objective value at the true parameter. Vertical dashed lines represent true
parameter values. Figures 3 and 4 display the results.

Figure 3 shows that the objective function of the II estimator generally fea-
tures pronounced local convexity around each true parameter, with minimal
distance between the local objective minimum and the objective value at the
true parameter. This is reflected in the good overall performance of the esti-
mator. On the other hand, the objective slice for σρ is a reminder that good
performance is not guaranteed in a single sample.

The picture is very different for the BBL estimators in Figure 4. The objective
slices are generally not minimized close to the true parameters. In many cases,
the objective function is monotonic over the parameters, which is consistent
with the degenerate distributions observed in Figure 2. Moreover, the II objec-
tive is typically much more responsive to deviations from its minimum than

30We note that these distributions are closer to Gaussian than those we obtain with a smaller
sample size in Appendix C.

31A cursory glance at these figures may understate the precision of the II estimator relative to
BBL, because the range of these figures varies across estimators. The ranges in the distribu-
tions of II estimates are much shorter than those in the distributions of BBL estimates.
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Table 2: Summary of Parameter Estimates

Value Indirect Inference BBL
Asymptotic Multiplicative Additive

θx1 2.625 2.872 6.888 1.944 0.08
0.734 2.635 2.21 0.442

θx2 1.624 1.581 10.0 5.481 0.055
0.148 0.004 0.813 0.335

θx3 0.5096 0.466 5.714 9.611 9.067
0.097 2.694 1.142 2.003

µρ -1.0 -1.127 -1.329 -1.103 -2.0
0.39 0.101 0.081 0.001

σρ 0.75 0.746 0.69 0.589 1.038
0.13 0.036 0.031 0.167

µϕ 0.625 0.864 1.809 1.851 1.898
0.616 0.074 0.063 0.268

σϕ 0.5 0.735 2.998 2.998 3.0
0.468 0.015 0.019 0.0

This table summarizes the results of our Monte Carlo experiment. The first column shows the
value of the investment cost, scrap value, and entry cost parameters used in the data generating
process. Each subsequent column shows the mean and standard deviation for estimates across
500 Monte Carlo replications. The column labeled “II” shows the results of the estimator we
propose in this paper. The columns labeled “Asymptotic”, “Multiplicative”, and “Additive”
display estimates from the three BBL alternatives we consider. See the main text for details.
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Figure 1: II Estimator Parameter Estimates

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the distribution of parameter estimates obtained using the indirect inference estimator defined in
Equation (26) over 500 Monte Carlo replications. The vertical dashed red line indicates the value of the corresponding
parameter in the data generating process.
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Figure 2: BBL Estimator Parameter Estimates

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the distribution of parameter estimates obtained using all BBL estimators over 500 Monte Carlo repli-
cations. ‘Asymptotic’ BBL in blue, ‘Multiplicative’ in red, ‘Additive’ in green. The vertical dashed red line indicates the
value of the corresponding parameter in the data generating process.
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the BBL objectives.32 These figures also illustrate the fact that the performance
of the BBL estimator depends on the deviations chosen by the econometrician.
Even when the BBL objective is minimized close to the true parameter (holding
other parameters fixed at the truth), as is the case for the µρ slices, the degree of
convexity of different BBL implementations differs markedly. This highlights
one of the advantages of estimators based on recursive equilibrium conditions:
they free the analyst from specifying policy deviations.

6 Conclusion

We have revisited the estimation of dynamic games with continuous controls.
We note that the commonly applied inequality estimator of Bajari et al. (2007)
does not fully exploit the structure of optimal policies and propose an estima-
tor that does so. Our estimator combines two-step methods common in the
estimation of dynamic models with firms’ Bellman equations and indirect in-
ference ideas. Importantly, our estimator applies to models with shocks to the
marginal cost of the continuous control and random scrap values and entry
costs. We conduct a Monte Carlo experiment based on an extension of Hashmi
and van Biesebroeck (2016) that allows for entry and exit. We find that the
estimator we propose significantly outperforms multiple implementations of
the BBL inequality estimator at a fixed computational budget. In the context
of a simpler model without entry and exit, we find that the indirect inference
estimator outperforms alternative estimators that also exploit the structure of
optimal policies.

Bajari et al. (2007) themselves propose an estimator that does use firms’ op-
timal behavior, albeit in the context of a simpler model. However, the empiri-
cal literature has converged to applying exclusively their inequality estimator.
We show how to use the optimality conditions characterizing firm behavior for
estimation of a model with shocks to firms’ costs of investment, entry, exit and
random entry costs and scrap values. We show that incorporating that informa-
tion brings about substantial econometric benefits relative to the BBL inequality
estimator. We hope that these results will steer empirical researchers towards
exploiting those conditions whenever possible.

32The µρ and σρ slices for the multiplicative implementation of BBL are an exception to this
rule.
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Figure 3: II Estimator Objective Slices

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the value of the objective function of the indirect inference estimator varying one parameter at a
time while holding the other parameters fixed at their true values. The vertical dashed line indicates the value of the
corresponding parameter in the data generating process.
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Figure 4: BBL Estimator Objective Slices

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the value of the objective function of the BBL estimators varying one parameter at a time while holding
the other parameters fixed at their true values. ‘Asymptotic’ BBL in blue, ‘Multiplicative’ in red, ‘Additive’ in green.
The vertical dashed line indicates the value of the corresponding parameter in the data generating process.
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Appendices

Appendix A Proofs and Derivations

A.1 Establishing equations (5) and (6)

We repeat the two equations here for the reader’s convenience:∫
εj

∫
ξ′j

V̄I(ξ
′) dF (ξ′j | ξj, σ(ξj, εj)) dGεj︸ ︷︷ ︸

A

=

∫
ξ′j

V̄I(ξ
′) dF σ(ξ′j | ξj)︸ ︷︷ ︸

B

( 5 – repeated)

where
F σ(ξ′j | ξj) :=

∫
εj

F (ξ′j | ξj, σ(ξj, εj)) dGεj . ( 6 – repeated)

We establish (5) under the following condition.

Definition 2. A function g : [a, b] → R is said to be uniformly Riemann-Stieltjes
integrable with respect to the family of functions F , where all F ∈ F map [a, b]

into R, if for all η > 0 there exists a partition P = (x0, x1, . . . , xn) of [a, b] such
that ∣∣∣∣∣

∫
g dF −

n∑
i=1

g(xi)[F (xi)− F (xi−1)]

∣∣∣∣∣ < η

for all F ∈ F .

Proposition 2. Let V̄I(ξ, j, ξ) := V̄I(ξ1, . . . , ξj−1, ξ, ξj+1, . . . , ξN̄). Suppose that
V̄I(ξ, j, ξ) is uniformly Riemann-Stieltjes integrable with respect to the family
of distributions {F (· | ξ, x) : ξ ∈ Ξ, x ∈ R+}. Then equation (5) holds.

Proof. For some partition P = (ξ0, ξ1, . . . , ξn) of [ξm, ξM ], define the quantity

C(P ) =
n∑

i=1

V̄I(ξi, j, ξ)

(∫
ε

F (ξi | ξj, σ(ξj, ε)) dGε −
∫
ε

F (ξi−1 | ξj, σ(ξj, ε)) dGε

)

Fix η > 0. By the definition of B above, we can choose P so that |C(P ) − B| <
η/2. Moreover, C(P ) is also

C(P ) =

∫
ε

n∑
i=1

V̄I(ξi, j, ξ) [F (ξi | ξj, σ(ξj, ε))− F (ξi−1 | ξj, σ(ξj, ε))]︸ ︷︷ ︸
D(P,ε)

dGε
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Let I(ε) denote the inner integral in A. By the uniform-integrability condition
we can choose P ′ such that |I(ε)−D(P ′, ε)| < η/2 for all ε. Then

|A− C(P ′)| =
∣∣∣∣∫

ε

I(ε) dGε −
∫
ε

D(P ′, ε) dGε

∣∣∣∣
≤
∫
ε

|I(ε)−D(P ′, ε)| dGε

< η/2

Let P ∗ be a common refinement of P and P ′. Then |A − B| ≤ |A − C(P ∗)| +
|C(P ∗)−B| < η. Since η > 0 is arbitrary, A = B.

A.2 Proof of Proposition 1

Proof. By Integration by Parts (Bartle (1964, Theorem 22.7)),∫
ξ′i

W (ξ′i | ξ, σ) dF (ξ′i | ξi, x) = −
∫

F (ξ′ | ξ, x) dW (ξ′ | ξ, σ)

+ W (ξM | ξ, σ)F (ξM | ξ, x)︸ ︷︷ ︸
=1

−W (ξm | ξ, σ)F (ξm | ξ, x)

Therefore,

∂2

∂x2

(∫
ξ′i

W (ξ′i | ξ, σ) dF (ξ′i | ξi, x)

)
= −

∫
∂2

∂x2
F (ξ′ | ξ, x) dW (ξ′ | ξ, σ)

− W (ξm | ξ, σ) ∂2

∂x2
F (ξm | ξ, x)

< 0

The differentiation under the integral sign is valid due to the twice continuous
differentiability of F (ξ′ | ξ, x) in x. The inequality is due to Assumption 1 and
the monotonicity of W . This inequality, coupled with the strict convexity of
c(x, ν), implies the desired property.

A.3 Characterizing EV

This section derives equation (29).33 We start from VI(ξ, ρ):

VI(ξ, ρ) = max
{
π(ξ) + ρ, V̄ A

I (ξ)
}
= max

χ∈{0,1}

{
χV̄ A

I (ξ) + (1− χ)(π(ξ) + ρ)
}

(43)

33Related calculations appear e.g. in Jofre-Bonet and Pesendorfer (2003); Pakes et al. (2007).
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Letting αI(ξ, ρ) denote the optimal policy, we have

VI(ξ, ρ) = αI(ξ, ρ)V̄ A
I (ξ) + (1− αI(ξ, ρ))(π(ξ) + ρ)

and, integrating over ρ,

V̄I(ξ) :=

∫
VI(ξ, ρ) dFρ

= PA
I (ξ)V̄

A
I (ξ) + [1− PA

I (ξ)]π(ξ)

+ [1− PA
I (ξ)]E[ρ | ρ > V̄ A

I (ξ)− π(ξ)] (44)

where PA
I (ξ) := P(αI(ξ, ρ) = 1) is the probability that an incumbent chooses to

be active when its initial state is ξ.
Next, letting σx(ξ, ν) denote the optimal investment policy, we have that

V A(ξ, ν) = π(ξ)− c(σx(ξ, ν), ν; θx)+β
∑
ξ′1∈Ξ

W (ξ′1 | ξ, θ−ϕ)P (ξ′1 | ξ1, σx(ξ, ν)) (45)

where, with slight abuse of notation, P (ξ′1 | ξ, x) denotes the probability of
the firms own characteristic evolving from ξ1 to ξ′1 when the firm invests x.
Integrating (45) we get

V̄ A
I (ξ) = π(ξ)−

∫
c(σx(ξ, ν), ν; θx) dFν + β

∑
ξ′1∈Ξ

W (ξ′1 | ξ, θ−ϕ)PA(ξ′1 | ξ) (46)

where PA(ξ′1 | ξ) :=
∫
P (ξ′1 | ξ1, σ

x(ξ, ν)) dFν is the ex-ante probability of ξ′1

given that the firm chooses to be active and investments optimally in state ξ.
Then, using the definition of W (ξ′1 | ξ, θ−ϕ), we have that

V̄ A
I (ξ) = π(ξ)−

∫
c(σx(ξ, ν), ν; θx) dFν

+ β
∑
ξ′1∈Ξ

∑
ξ′−1

V̄I(ξ
′
1, ξ

′
−1)
∏
k>1

Pσ(ξ′k | ξ)

PA(ξ′1 | ξ) . , (47)

where P σ(ξ′k | ξ) is defined in equation (33).
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We now plug (47) into (44) to obtain

V̄I(ξ) = π(ξ)− PA
I (ξ)

∫
c(σx(ξ, ν), ν; θx) dFν

+ [1− PA
I (ξ)]E[ρ | ρ > V̄ A

I (ξ)− π(ξ)]

+ β
∑

{ξ′:ξ′1>−∞}

V̄I(ξ
′)

N∏
k=1

Pσ(ξ′k | ξ) (48)

where the last line uses the fact that Pσ(ξ′1 | ξ) = PA(ξ′1 | ξ)PA
I (ξ). Note that we

can also make the sum in the last line over all ξ′ if we define V̄I(ξ
′) = 0 when

ξ′1 = −∞. With this convention it is more accurate to interpret V̄I(ξ) as the
ENPV of landing in state ξ (given our assumption that firms that exit perish),
rather than starting a period from state ξ.

Observe that V̄I := [V̄I(ξ) : ξ ∈ ΞR, ξ1 > −∞] enters equation (48) in a non-
linear fashion through the E[ρ | ρ > V̄ A(ξ)− π(ξ)] term. Fortunately, assuming
that Fρ is strictly increasing, we can deal with that term as follows:

E[ρ | ρ > V̄ A(ξ)− π(ξ)] = E[ρ | Fρ(ρ) > Fρ(V̄
A(ξ)− π(ξ))]

= E[ρ | Fρ(ρ) > PA
I (ξ)]

= E[ρ | ρ > F−1
ρ (PA

I (ξ))] , (49)

which does away with V̄ A(ξ). We can now plug (49) into (48) and stack across
states with ξ1 > −∞:

V̄I = π −K(θx) +Σ(Fρ) + βM (P )V̄I (29 – Repeated)

where the terms of this equation are defined in (30) to (33).
Finally, note that (29) does uniquely define V̄I because the matrix I−βM (P )

is invertible. Indeed, assume otherwise. Then there exists x ∈ ΞR
I \ {0} such

that [I−βM (P )]x = 0, or x = βMx. This implies ∥x∥∞ = ∥βMx∥∞. However,
letting (Mx)i denote the i-th coordinate of Mx, we have

|(Mx)i| =

∣∣∣∣∣∣
|ΞR

I |∑
j=1

Mijxj

∣∣∣∣∣∣ ≤
|ΞR

I |∑
j=1

Mij|xj| ≤ ∥x∥∞
|ΞR

I |∑
j=1

Mij ≤ ∥x∥∞ ,

where we have used that M is a sub-stochastic matrix, i.e. its rows sum to at
most one.34 Therefore ∥x∥∞ = ∥βMx∥∞ = β∥Mx∥∞ ≤ β∥x∥∞, a contradic-

34The rows of M(P ) need not sum to one because M(P ) is the matrix of transitions between
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tion.

A.4 The Gradient of Q(θ)

Let Q(θ) = [λ(θ)− γ̂]′Ω[λ(θ)− γ̂]. The gradient of Q(θ) is

∇Q(θ) = 2[λ(θ)− γ̂]′ΩDθλ(θ) (50)

We thus need to compute Dθλ(θ), the jacobian of λ(θ). We split this calculation
in three parts, one for each subvector. We start with a few necessary prelimi-
naries. In what follows, let d(x) denote the dimension of x.

A.4.1 Preliminaries

The calculation of the jacobians of λx,λE and λN will require the jacobians of
V̄I(θ−ϕ), the gradients of W (ξ′ | ξ, θ−ϕ), and the jacobians of V̄ A(ξ; θ−ϕ). We
discuss those calculations in this subsection.

First, V̄I(θ−ϕ) satisfies equation (29), repeated here for convenience with the
difference that we make it explicit that Fρ depends on a (finite-dimensional)
parameter vector θρ:

[I − βM (P )]V̄I(θ−ϕ) = π −K(θx) +Σ(Fρ(θρ)) (29 – repeated)

where

K(θx) =

[
PA
I (ξ)

∫
c(σx(ξ, ν), ν; θx) dFν : ξ ∈ ΞR

I

]
( 30 – repeated)

and

Σ(Fρ) =

[
[1− PA

I (ξ)]E[ρ | ρ > F−1
ρ (PA

I (ξ))] : ξ ∈ ΞR
I

]
( 31 – repeated)

Therefore, to compute the jacobian of V̄I(θ−ϕ) we need to compute the jacobian
of the vector of expected flow profits, the right-hand side of equation (29). This
jacobian is [

DθxK(θx) DθρΣ(Fρ(θρ)) 0|Ω|×d(θϕ)

]
.

states in ΞR
I = {ξ ∈ ΞR : ξ1 > −∞} rather than ΞR.
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In this expression, the first term is

DθxK(θx) =

[
PA
I (ξ)

∫
∇θxc(σ

x(ξ, ν), ν; θx) dFν : ξ ∈ ΞR
I

]
. (51)

The second term, DθρΣ(Fρ(θρ)), will depend on the parametric assumptions
made on Fρ. In the lognormal case, the jacobian DθρΣ(Fρ(θρ)) can be calculated
using formulas shown below for the quantiles of the distribution and for the
lower-truncated conditional expectations. The third term in the matrix above is
a zero matrix corresponding to the derivatives with respect to θϕ. Once we have
the jacobian of expected flow profits we can compute the jacobian of V̄I(θ−ϕ) by
solving the system of linear equations above.35

Next, remember that

W (ξ′1 | ξ, θ−ϕ) =
∑
ξ′−1

V̄I(ξ
′; θ−ϕ)

∏
k>1

P σ(ξ′k | ξ) .

Therefore, we compute ∇θW (ξ′1 | ξ, θ−ϕ) by simply taking the corresponding
convex combination of the gradients of V̄I(ξ; θ−ϕ) terms computed above.36

Finally, V̄ A(ξ; θ−ϕ) is given by

V̄ A(ξ; θ−ϕ) = π(ξ)− Eν [c(σ
x(ξ, ν), ν; θx)] +

∑
ξ′∈Ξ:ξ′>−∞

W (ξ′ | ξ, θ−ϕ)P
A(ξ′ | ξ) ,

(52)
where PA(ξ′ | ξ) has been defined in section A.3. We can thus compute the
jacobian of V̄ A using the previously computed ∇θW (ξ′ | ξ, θ−ϕ). This concludes
the preliminaries required for the derivations that follow.

A.4.2 The Jacobian of λx

Remember that

λ̂x(θ−ϕ) :=
[
λ̂x
1(θ−ϕ) . . . λ̂x

B(θ−ϕ) Sζx(θ−ϕ)
]
.

35We remind the reader that we compute a decomposition of the matrix I − βM(P ) once and
store that in memory, so computing this jacobian is not an expensive operation. Moreover, if
c(x, ν; θx) is linear in θx (as in the HvB model we simulate in section 5), the first submatrix of
(51) does not depend on θx. This reduces the number of linear systems that have to be solved
to compute the jacobian of V̄I(θ−ϕ).

36The non-linearity of V̄I(θ−ϕ) affects the cost of these computations. Under linearity, these
gradients do not depend on the parameters and can be computed only once.
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Therefore

Dθλ̂
x(θ)

(kx+1)×d(θ)

=

Dθλ̂
x
ξ(θ)

kx×d(θ)

∇θSζx(θ)
1×d(θ)

 ,

where λ̂x
ξ(θ) is the vector collecting λ̂x

1 to λ̂x
B and where we make the functions

depend on the entire vector θ even though they only depend on θ−ϕ because we
want to obtain the jacobian with respect to the entire vector of parameters; the
final d(θϕ) columns of the jacobian are zero.

The object λ̂x
ξ(θ) is an OLS estimate, and thus satisfies

(X ′X)λ̂x
ξ(θ) = X ′σx(θ)

where X is the matrix of features

X =


Ψx

1(ξ1) . . . Ψx
Bx(ξ1)

... . . . ...
Ψx

1(ξN) . . . Ψx
Bx(ξN)


and

σx(θ) =


σx(ξ1, ν1; θ−ϕ)

...
σx(ξN , νN ; θ−ϕ)

 .

In these equations, ξ1 to ξN are the states observed in the data, ν1 to νN are
draws from Fν , and σx(ξi, νi; θ−ϕ) was defined in section 3.37 We therefore have
that,

(X ′X)Dθλ̂
x
ξ(θ) = X ′Dθσ

x(θ) (53)

where

Dθσ
x(θ) =


∇θσ

x(ξ1, ν1; θ−ϕ)
...

∇θσ
x(ξN , νN ; θ−ϕ)

 .

By the Implicit Function Theorem, the gradients in the matrix above are
given by

∇θσ
x(ξ, ν; θ−ϕ) = −

[
∂f

∂x
(x∗, ξ, ν; θ−ϕ)

]−1

∇θf(x
∗, ξ, ν; θ−ϕ)

37We draw the νi shocks once and store them in memory so that all parameter values use the
same νi shocks.
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where x∗ = σx(ξ, ν; θ−ϕ) and f(·) is the investment first-order condition, namely

f(x, ξ, ν; θ−ϕ) := −∂c(x, ν; θx)

∂x
+ β

∑
{ξ′∈Ξ : ξ′>−∞}

W (ξ′|ξ, θ−ϕ)
∂P (ξ′|ξ, x)

∂x
,

The derivative ∂f/∂x is immediate from the previous equation. The gra-
dient ∇θf follows from the previous equation and the calculation of ∇θW in
section A.4.1. We can then solve for Dθλ̂

x
ξ from equation 53.

Next, we need ∇θSζx(θ). We have

Sζx(θ) =

{
1

n−Bx

n∑
i=1

[σx(ξ, ν; θ−ϕ)−Ψx(ξi)
′λ̂x

ξ(θ)]
2

} 1
2

where Ψx(ξi) := (Ψx
1(ξi) . . .Ψ

x
Bx(ξi))

′. Therefore,

∇θSζx(θ) =
1

Sζx(θ)(n−Bx)

×
n∑

i=1

[σx(ξ, ν; θ−ϕ)−Ψx(ξi)
′λ̂x

ξ(θ)]
{
∇θσ

x(ξ, ν; θ−ϕ)−∇θ[Ψ
x(ξi)

′λ̂x
ξ(θ)]

}
The first gradient in these expressions has already been characterized. The sec-
ond gradient is

∇θ[Ψ
x(ξi)

′λ̂x
ξ(θ)] = Ψx(ξi)

′Dθλ̂
x
ξ(θ)

and Dθλ̂
x
ξ(θ) has just already characterized.

A.4.3 The Jacobian of λE

We have

λ̂E(θ) = (X ′
EXE)

−1X ′
E[1− Fρ(

ˆ̄V A(ξi; θ−ϕ)− π(ξi); θρ)]
M
i=1

where XE denotes the design matrix for the exit auxiliary model, i indexes ob-
servations, and M denotes the sample size (i.e., the number of observations in
which the firm is active). Therefore,

Dθλ̂
E(θ) = (X ′

EXE)
−1X ′

E[∇θP(Exit | ξi; θ)]Mi=1

45



where P(Exit | ξi; θ) := 1− Fρ

(
ˆ̄V A(ξi; θ−ϕ)− π(ξ); θρ

)
. Now observe that

∇θP(Exit | ξ; θ) = −fρ(
ˆ̄V A(ξ; θ−ϕ)− π(ξ); θρ)∇θ

ˆ̄V A(ξ; θ−ϕ)

− ∇θFρ(x; θρ)

∣∣∣∣
x=ˆ̄V A(ξ;θ−ϕ)−π(ξ)

,

where fρ = F ′
ρ is the density of the scrap value distribution and the second

term is the gradient of the cumulative distribution function Fρ evaluated at
ˆ̄V A(ξ; θ−ϕ) − π(ξ). We adopt that notation to make clear that the gradient is
with respect to parameters only, and not the gradient of the composite func-
tion Fρ(

ˆ̄V A(ξ; θ−ϕ) − π(ξ); θρ). The terms fρ and ∇θFρ are primitives. The term
∇θ

ˆ̄V A(ξ; θ−ϕ) was characterized in section A.4.1.

The Jacobian of λN We have

λN(θ) = (X ′
NXN)

−1X ′
N

[
Fϕ

(
ˆ̄V A
E (ξ−1;θ−ϕ);θϕ

)]M
i=1

where M denotes the sample size and XN is the design matrix of the auxiliary
entry model. Note that λN is the only auxiliary parameter that does depend on
θϕ. Therefore,

Dθλ
N(θ) = (X ′

NXN)
−1X ′

N [∇T
θ P(Entry|ξ−1; θ)]

M
i=1 , (54)

where P(Entry|ξ−1; θ) := Fϕ(
ˆ̄V A
E (ξ−1;θ−ϕ);θϕ). Similarly to the exit case, we

have

∇θP(Entry | ξ−1; θ) = fϕ(
ˆ̄V A
E (ξ−1;θ−ϕ);θϕ)∇θ

ˆ̄V A
E (ξ−1; θ−ϕ)

+ ∇θFϕ(x;θϕ)

∣∣∣∣
x=ˆ̄V A

E (ξ−1;θ−ϕ)

.

The terms fϕ and ∇θ are primitives. The term ∇θ
ˆ̄V A
E (ξ−1; θ−ϕ) was characterized

in section A.4.1.

Appendix B Monte Carlo: Additional Results

This appendix presents estimate histograms for each BBL estimator separately,
as well as run time and memory allocation for the different steps of our simu-
lation averaged over 500 runs.
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A caveat to comparing estimator performance based on Table 3 is that we tune
estimator termination conditions to ensure all of the estimators are guaranteed
comparable time per simulation. As a result, there should be – by construction
– no clear winner in average time.

Table 3: Exercise Timings

Call Average Time Average Allocation
Overall
Solving the Game 41.1s 28.7GiB
First Stage (Shared by All Estimators) 94.2s 43.9GiB

Indirect Inference – Factorization 49.7s 21.0GiB
Indirect Inference – Bootstrapped Weight Matrix 22.1s 20.8GiB

Indirect Inference Second Stage 467s 24.0GiB
Estimation of θx and θρ 463s 23.5GiB
Estimation of θϕ 1.05s 421MiB

Bajari Benkard Levin Second Stage: Asymptotic 452s 420GiB
Incumbent Forward Simulation 236s 289GiB
Estimation of θx and θρ 145s 52.5GiB
Entrant Forward Simulation 14.5s 13.7GiB
Estimation of θϕ 68.0ms 60.0MiB

Bajari Benkard Levin Second Stage: Multiplicative 480s 428GiB
Incumbent Forward Simulation 249s 291GiB
Estimation of θx and θρ 154s 57.9GiB
Entrant Forward Simulation 14.5s 13.7GiB
Estimation of θϕ 64.0ms 59.1MiB

Bajari Benkard Levin Second Stage: Additive 475s 442GiB
Incumbent Forward Simulation 223s 283GiB
Estimation of θx and θρ 154s 58.2GiB
Entrant Forward Simulation 14.5s 13.7GiB
Estimation of θϕ 64.3ms 57.9MiB

This table reports the computation time and memory allocation associated with each step in the
computation of the four estimators discussed above. Note that the memory allocation reported
here is not the amount of memory required to compute these estimators, but rather the total
size of objects that are written to memory throughout the course of estimation. In “First Stage”,
“Factorization” and “Bootstrapped Weight Matrix” are only necessary for the Indirect Inference
estimator.
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Figure 5: Asymptotic BBL Estimator Parameter Estimates

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the distribution of parameter estimates obtained using the ‘Asymptotic’ BBL
estimator over 500 Monte Carlo replications. The vertical dashed red line indicates the value of
the corresponding parameter in the data generating process.
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Figure 6: Multiplicative BBL Estimator Parameter Estimates

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the distribution of parameter estimates obtained using the ‘Multiplicative’ BBL
estimator over 500 Monte Carlo replications. The vertical dashed red line indicates the value of
the corresponding parameter in the data generating process.
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Figure 7: Additive BBL Estimator Parameter Estimates

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the distribution of parameter estimates obtained using the ‘Additive’ BBL
estimator over 500 Monte Carlo replications. The vertical dashed red line indicates the value of
the corresponding parameter in the data generating process.
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Appendix C Small Dataset Monte Carlo Results

In this section we compare performance of the estimators presented in Section
5 for datasets with sample size in line with Ryan (2012). We consider data for
27 markets recorded over 20 periods. All other simulation parameters are as in
Table 1.

We compare the performance of the four estimators presented in Section 5.
Table 4 lists true parameter values along with estimate average and standard
deviation for the four estimators over 500 simulations. Of the four estimators,
the II estimator evidently performs the best, though with more finite sample
bias and larger uncertainty than in Section 5. BBL estimators again display
substantial bias and large variance. Figures 8 and 9 present the distribution
of parameter estimates for each algorithm. II estimates are correctly centered
around the true values. As in section 5, the scrap value and entry cost estimates
display some skewness. BBL estimators are centered around wrong values,
displaying very substantial finite sample bias.

We again relate the performance of the different estimators to the differences
in the objective functions that define them. We illustrate this by analysing the
shape of each objective function in a neighbourhood of the true parameters for
a particular simulated dataset. To do so, we plot slices of the objective func-
tion by varying one parameter at a time while holding the others fixed at their
true values. To render the shape of different objective functions comparable, we
normalise objective values on the parameter grid by dividing each by the objec-
tive value at the true parameter. Vertical dashed lines represent true parameter
values. Figures 10 and 11 display the results.

Figure 10 shows that, once again, the objective function of the II estima-
tor generally features pronounced local convexity around each true parameter,
with minimal distance between the local objective minimum and the objective
value at the true parameter. This is reflected in the good performance of the
estimator. On the other hand, the objective slice for σρ is a reminder that things
can go wrong in a single sample. The picture is very different for the BBL esti-
mators in Figure 11. The objective slices with respect to cost parameter vector θx
are sometimes flat around the true parameter, sometimes minimized far away
from the truth, and sometimes monotonic over the range of values we consider.
We also observe monotonicity when considering slices with respect to the entry
cost parameters. These slices are consistent with the unsatisfactory summary
results in Table 4. Importantly, observe again that Figure 11 shows that differ-
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Table 4: Summary of Parameter Estimates

Value Indirect Inference BBL
Asymptotic Multiplicative Additive

θx1 2.625 3.016 4.917 5.131 2.426
1.066 2.624 2.784 2.256

θx2 1.624 1.57 6.71 5.444 1.666
0.276 3.003 1.259 1.86

θx3 0.5096 0.452 5.582 5.521 5.459
0.299 2.496 2.861 2.811

µρ -1.0 -1.253 -1.146 -1.175 -1.999
0.587 0.19 0.187 0.008

σρ 0.75 0.775 0.684 0.574 0.931
0.21 0.069 0.072 0.314

µϕ 0.625 1.161 1.878 1.646 1.679
1.03 0.311 0.307 0.526

σϕ 0.5 0.961 2.933 2.927 2.976
0.762 0.187 0.188 0.107

This table summarizes the results of our Monte Carlo experiment. The first column shows the
value of the investment cost, entry cost, and scrap value parameters used in the data generating
process. Each subsequent column shows the mean and standard deviation for estimates across
500 Monte Carlo replications. The column labeled “II” shows the results of the estimator we
propose in this paper. The columns labeled “Asymptotic”, “Multiplicative”, and “Additive”
display estimates from the three BBL alternatives considered. See text for definitions.
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ent choices of deviations in the implementation of BBL will deliver estimators
with different performance.
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Figure 8: II Estimator Parameter Estimates, Small Dataset

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the distribution of parameter estimates obtained using the indirect inference
estimator defined in Equation (26) over 500 Monte Carlo replications. The vertical dashed red
line indicates the value of the corresponding parameter in the data generating process.
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Figure 9: BBL Estimator Parameter Estimates, Small Dataset

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the distribution of parameter estimates obtained using all BBL estimators over
500 Monte Carlo replications. ‘Asymptotic’ BBL in blue, ‘Multiplicative’ in red, ‘Additive’ in
green. The vertical dashed red line indicates the value of the corresponding parameter in the
data generating process.
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Figure 10: II Estimator Objective Slices, Small Dataset

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the value of the objective function of the indirect inference estimator varying
one parameter at a time while holding the other parameters fixed at their true values. The
vertical dashed line indicates the value of the corresponding parameter in the data generating
process.
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Figure 11: BBL Estimator Objective Slices, Small Dataset

θx1 θx2

θx3

µρ σρ

µϕ σϕ

This figure plots the value of the objective function of the BBL estimators varying one parameter
at a time while holding the other parameters fixed at their true values. ‘Asymptotic’ BBL in
blue, ‘Multiplicative’ in red, ‘Additive’ in green. The vertical dashed line indicates the value of
the corresponding parameter in the data generating process.
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Appendix D Monte Carlo Results for a Model with-

out Entry and Exit

In this Appendix we present Monte Carlo evidence on the performance of es-
timators discussed in Sections 3 and 4 for a model without entry and exit. The
model is the same as the one presented in Section 2, aside for the fact that we as-
sume the number of firms in each market is fixed over time (and this is known
to firms).

We present results for two estimators that use the recursive equilibrium con-
ditions. In addition to the II estimator discussed at length above, we also con-
sider a nonlinear least squares (NLLS) estimator, as defined in equation (27).38

One main reason to analyse estimator performance under this simpler setup is
that the g(ξ, σ′;σ,θ) terms entering the BBL objective function (37) are linear
in parameters. This is important not only because it further reduces the com-
putational burden of the estimator, but also because it allows us to consider the
possibility that the BBL objective is not uniquely minimized without substantial
complication.39

Indeed, when the incumbent value function is linear in parameters, BBL
inequalities define a polyhedron that can be readily computed using existing
software. If the polyhedron is found to be empty (i.e. there exists no parame-
ter vector that satisfies all BBL inequalities), it is possible (but not guaranteed)
that minimization of the BBL objective will return a single parameter vector. If
however the polyhedron is found not to be empty, all parameter vectors lying
within the polyhedron will set the BBL objective to zero.40 For the purpose of
this section we therefore first check whether the inequalities used in estimation
characterize a non-empty polyhedron. If they do, we set estimate parameters
by projection; otherwise, we minimise the BBL objective. Furthermore, because
now each simulation can return a set rather than point estimates, we compute
average lower and upper bounds across estimated sets instead of an average

38Other estimators could be considered. For instance, one could minimize the distance be-
tween estimated and predicted conditional expectations of investment. This would be the
continuous-control analog of the Pesendorfer and Schmidt-Dengler (2008) estimator. In re-
sults not reported here we find that this estimator performs similarly to the NLLS estimator.

39See e.g. Aguirregabiria, Collard-Wexler, and Ryan (2021): “[. . . ] in most applications of the
BBL method, the relatively small set of alternative CCPs selected by the researcher does not
provide enough moment inequalities to achieve point identification such that the BBL method
provides set estimation of the structural parameters.”

40When the incumbent value function is not linear in parameters, as in the case of the model
with entry and exit, BBL inequalities still define a potentially non-empty set, but they do not
define a polyhedron. Computation of the set estimate is then more cumbersome.
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of point estimates. Also, we follow Manski and Tamer (2002) and compute, for
each parameter, the shortest interval that covers 95% of the estimated sets.41

While these steps may be of independent interest to empiricists using the BBL
estimator, their purpose in our case is to clarify whether the poor performance
of the BBL estimator in our Monte Carlo (both in Section 5 and in this Ap-
pendix) is limited identifying power resulting from choosing too few inequali-
ties. This is not the case: across the 100 simulations presented in this Appendix,
we always find the polyhedron defined by the BBL inequalities to be empty. We
treat this result as evidence that an insufficient number of inequalities leading
to a large set-estimate for the structural parameters does not explain the poor
performance of BBL under our model and simulated data set, and we do not
conduct the same analysis for the model with entry and exit in Section 5.42

Table 5: Summary of Parameter Estimates

Value Indirect Inference BBL NLLS

Asymptotic Multiplicative

θx1 2.625 2.616 [0.0, 0.0] [0.0, 0.0] 3.004

(1.404, 3.621) (0.0, 0.0) (0.0, 0.0) (1.561, 4.68)

θx2 1.624 1.594 [131.546, 131.546] [3.762, 3.762] 1.524

(1.017, 2.197) (118.08, 145.552) (2.567, 5.574) (0.842, 2.167)

θx3 0.5096 0.498 [18.156, 18.156] [6.0, 6.0] 1.234

(0.393, 0.578) (0.0, 35.586) (0.0, 23.826) (0.0, 3.519)

This table summarizes the results of the Monte Carlo experiment for the model without entry
and exit. The first column shows the value of the parameters of the investment cost function
in the data generating process. Each subsequent column shows the mean and standard er-
ror of estimates across Monte Carlo replications. The column labeled “II” shows the results
of the Indirect Inference estimator. The column labeled “Asymptotic” shows the results of the
Asymptotic BBL estimator. The column labeled “Multiplicative” shows the results of the Multi-
plicative BBL estimator. The column labeled “NLLS” shows the results of the estimator defined
in Equation (27).

Table 5 lists true parameter values along with estimate average and stan-
dard deviation for the four estimators over 100 simulations. Of the four esti-
mators, the II estimator evidently performs the best, though with more finite
sample bias and larger uncertainty than in Section 5. The NLLS estimator and,
41We treat point estimates as sets with coinciding upper and lower bounds.
42Even if it were the case that our BBL implementations and number of inequalities led to large

set-estimates, that would of course not invalidate the main message of this paper that the es-
timator based on recursive equilibrium conditions has superior performance relative to BBL,
as we compare the two estimators while holding their computational cost fixed.
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in particular, BBL estimators display substantial bias and larger standard devi-
ation than the II estimator. Figures 12, 13, 14, and 15 present the distribution
of parameter estimates for each algorithm; vertical dotted lines represent true
parameter values. II estimates are correctly centered around the true values
and seem close to Gaussian. Additive and Multiplicative BBL estimators are
centered around wrong values, displaying a bias that can be orders of magni-
tude larger than the parameter to be estimated. The NLLS estimator performs
substantially better than the two BBL implementations, but also significantly
underperforms the II estimator.

As in Section 5, we plot slices of the objective function by varying one pa-
rameter at a time while holding the others fixed at their true values. To render
the shape of different objective functions comparable, we normalise objective
values on the parameter grid by dividing each by the objective value at the true
parameter. Figures 16 to 19 display the results. Vertical lines represent true
parameter values.

Figure 16 shows that the objective function of the II estimator features pro-
nounced local convexity around each true parameter, with minimal distance
between the local objective minimum and the objective value at the true pa-
rameter. This is reflected in the good performance of the estimator, both in
terms of short 95% confidence intervals and small bias.

The picture is very different for the HvB and BBL estimators. They are ap-
proximately flat around the true parameter, and zooming in reveals that they
display no convexity at all for the considered grid – they are almost linear
around the correct parameter values. This is consistent with the poor perfor-
mance displayed in Figures 13 and 14.

Finally, objective plots for the NLLS estimator are informative about its im-
precision. Objective function minima are not far from the minima at the true
parameter value (low bias) for θx1, θx2, but the NLLS objective function is much
less convex around local minima than the II objective function. On the other
hand, the objective function is not centered around the true parameter value
for θx3.
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Figure 12: II Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the II estimator de-
scribed in Equation (26) over 100 Monte Carlo replications. The vertical dashed red line indi-
cates the value of the corresponding parameter in the data generating process.

Figure 13: Multiplicative BBL Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the Multiplicative BBL
estimator over 100 Monte Carlo replications. The vertical dashed red line indicates the value of
the corresponding parameter in the data generating process.
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Figure 14: Additive BBL Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the Additive BBL esti-
mator over 100 Monte Carlo replications. The vertical dashed red line indicates the value of the
corresponding parameter in the data generating process.

Figure 15: NLLS Estimator Parameter Estimates

This figure plots the distribution of parameter estimates obtained using the NLLS estimator de-
fined in Equation (27) over 100 Monte Carlo replications. The vertical dashed red line indicates
the value of the corresponding parameter in the data generating process.
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Figure 16: II Estimator Objective Slices

This figure plots the value of the II estimator objective function varying one parameter at a
time while holding the other two parameters fixed at their true values. Values are scaled by the
value of the objective at the true parameters.

Figure 17: Asymptotic BBL Estimator Objective Slices

This figure plots the value of the objective function of the Asymptotic BBL estimator varying
one parameter at a time while holding the other two parameters fixed at their true values.
Values are scaled by the value of the objective at the true parameters.
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Figure 18: Multiplicative BBL Estimator Objective Slices

This figure plots the value of the objective function of the Multiplicative BBL estimator varying
one parameter at a time while holding the other two parameters fixed at their true values.
Values are scaled by the value of the objective at the true parameters.

Figure 19: NLLS Estimator Objective Slices

This figure plots the value of the objective function of the estimator defined in Equation (27)
varying one parameter at a time while holding the other two parameters fixed at their true
values. Values are scaled by the value of the objective at the true parameters.

64


	Introduction
	The Economic Model
	Equilibrium Concept
	The Incumbent's Problem
	The Incumbent's Exit Decision

	The Entrant's Problem
	Equilibrium

	Estimation via Recursive Equilibrium Conditions
	Indirect Inference
	Investment
	Exit
	Entry
	Estimation Problem

	Estimating Integrated Value Functions

	A Review of the BBL Inequality Estimator
	Monte Carlo Simulations
	The Model
	Static Price Competition
	The Investment Decision

	Parameterization
	Implementation Details for Different Estimators
	Monte Carlo Results

	Conclusion
	References
	Proofs and Derivations
	Establishing equations (5) and (6)
	Proof of Proposition 1
	Characterizing EV
	The Gradient of Q()
	Preliminaries
	The Jacobian of x
	The Jacobian of E


	Monte Carlo: Additional Results
	Small Dataset Monte Carlo Results
	Monte Carlo Results for a Model without Entry and Exit

