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Abstract

I study the effects of universal service regulation in oligopolistic indus-

tries with sunk investment costs, focusing on the Brazilian mobile telecom-

munications industry. To quantify the impact of regulation on service avail-

ability, market structure and the speed and cost of roll-out of new tech-

nologies, I develop a dynamic game of entry and technology upgrade un-

der regulation and estimate it using new panel data on mobile technol-

ogy availability in Brazilian municipalities. In counterfactual simulations,

I find that the regulation accelerated the introduction of 3G technology to

a group of mostly rural and relatively poor municipalities by 0.7 years, on

average, and reduced firms’ aggregate profits by 20%. Though the regula-

tion may act as a commitment device and deter entry, I find those effects

to be quantitatively small. I show that an alternative subsidization policy

similarly accelerates the roll-out of 3G and leads to substantially higher

aggregate profits, likely increasing aggregate welfare.
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1 Introduction

Firms’ inability to appropriate the consumer surplus generated by their new
goods and services may lead to underprovision. This possibility is particu-
larly salient in industries featuring large fixed costs and in disadvantaged ar-
eas, where the prospects of recouping these costs are dim. Concerns regarding
service underprovision have led to regulatory oversight and intervention in
many industries, such as postal service, healthcare, airlines, and telecommuni-
cations.1 The purpose of this paper is to evaluate the effects of these interven-
tions and compare their desirability relative to alternative policies.

Concerns of service underprovision have historically been particularly salient
in the telecommunications industry (Wu (2010)) because of the substantial in-
vestment costs required for network expansion and the many benefits asso-
ciated with access to telecommunications services.2 Countries ranging from
Nigeria to the United States regulate the roll-out of new mobile telecommuni-
cations technologies to ensure their diffusion to low-income, rural, or isolated
areas. A common regulatory tool is called coverage requirements. A coverage
requirement tasks a single firm (the regulated firm) with providing service of a
specific technology in a given area by a date set by the regulator, while impos-
ing no constraints on the behavior of its competitors (the unregulated firms).3

When deciding whether to impose such a requirement, the regulator faces
the following trade-off. On the one hand, the regulation presumably generates
service in areas that would not be served in its absence and accelerates the in-
troduction of new technologies in other areas, thus increasing the discounted
stream of consumer surplus. On the other hand, coverage requirements impose
a cost on the regulated firm, for it is required to enter a market or upgrade its
technology when it might not have done so in the absence of regulation. Fur-
thermore, a coverage requirement is a credible commitment by the regulated

1For example, in the United States the USPS is subject to a Universal Service Obligation; the
HRSA runs the Medicare Rural Hospital Flexibility Program; the DOT runs the Essential Air
Service and Small Community Air Service Development Program, and The Universal Service
Administrative Company spends almost ten billion dollars annually in subsidies for high-speed
broadband access (see Q8 here – last accessed May 21, 2021.).

2Telecommunications services have been shown to have positive effects on economic growth
(Roller and Waverman (2001), Czernich, Falck, Kretschmer, and Woessmann (2011)); labor pro-
ductivity (Bertschek and Niebel (2016), Akerman, Gaarder, and Mogstad (2015)); market effi-
ciency (Jensen (2007)), and risk-sharing (Jack and Suri (2014)). See Aker and Mbiti (2010) and
Hjort and Tian (2021) for reviews of this literature.

3This is the implementation of coverage requirements in my empirical setting. Another
common implementation is for firms to be obliged to provide service to at least some fraction
of the territory covered by their license.
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firm to provide service of a relatively advanced technology. This commitment
may deter entry by its competitors. This, in turn, may incentivize the regu-
lated firm to delay its own introduction of the new technology to benefit from
decreasing costs of adoption. These equilibrium effects may diminish or even
reverse the intended effect of the regulation.

To quantify the effects of coverage requirements and alternative policies on
service availability and the speed of technology roll-out, I develop and estimate
an empirical dynamic game of entry and technology upgrade under regulation.
A model of entry and technology upgrade in the mobile telecommunications in-
dustry must allow for changes over time in consumers’ preferences for and the
cost of introducing new technologies. Therefore, I model firms’ flow profits as
a time-varying function of market structure and local demographics. Similarly,
technology introduction costs vary over time and depend on local market char-
acteristics. Moreover, in the model, as in the data, in each market exactly one
firm is required to provide 3G service by a date set exogenously by the regula-
tor. I model enforcement by assuming that a noncompliant regulated firm pays
a fine every period following the regulation deadline.

The time-varying nature of variable profits and technology adoption costs
and the regulation deadline make the environment non-stationary. Existing
empirical models of technology adoption make assumptions such as a finite
horizon that allow the application of backward induction solution algorithms. I
instead assume that structural parameters stabilize before the end of the sample
and focus on what I call Quasi-Stationary Markov Perfect Equilibria (QMPE).
Essentially, QMPE have a non-stationary phase followed by a stationary phase.
This structure allows me to adapt existing estimation techniques used in sta-
tionary dynamic games to a non-stationary setting. I also introduce a novel
model of flow profits that is estimatable with data on market shares and expen-
ditures but not prices. Moreover, I introduce assumptions that allow quantity
data at different levels of geographic granularity to be combined in a GMM es-
timator that adapts the techniques of S. Berry (1994) and S. Berry, Levinsohn,
and Pakes (1995).

I estimate the dynamic parameters of the model using new panel data on
mobile technology availability at the municipality level in Brazil from June 2013
to June 2021, focusing on a set of relatively small municipalities. These data
show that regulated firms are more likely to enter a market and upgrade their
technologies than unregulated firms. Moreover, the latter are less likely to enter
a market or upgrade their technologies when the regulated firm is yet to satisfy
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its coverage requirement, a pattern consistent with the entry deterrence effect
outlined above.

I find that the profits and costs associated with 3G are fairly stable over the
sample period. The profits associated with 4G rise sharply, and the costs of 4G
introduction decrease substantially over time. The cost of non-compliance with
the regulation is not directly observed, but it is identified from differences in
behavior between regulated and unregulated firms. I estimate it to be sizable:
it amounts to 28.35% of the median entry cost.

Counterfactual exercises show that in the absence of regulation, the arrival
of 3G technology to relatively small and underdeveloped markets in Brazil
would have happened 0.67 years later, on average – and more than 2 years later
in some cases. The regulation reduces firms’ aggregate expected profits by 321
million BRL, or 20.04% of the profits they obtain in the absence of regulation. I
find the entry deterrence effects to be quantitatively small.

I also evaluate alternative policy interventions. I find that a budget neutral
subsidy paid to the first firm to introduce 3G technology similarly accelerates
its roll-out. Moreover, firms benefit substantially from the subsidy: their ag-
gregate profits increase by 126 million BRL, or 9.83% of their earnings under
coverage requirements, after accounting for the financing of the subsidy. These
gains stem primarily from a more cost-efficient pattern of technology adop-
tion. The subsidy typically leads an incumbent to introduce the new technol-
ogy, whereas coverage requirements are imposed on potential entrants in many
cases. Incumbents only incur technology installation costs, whereas potential
entrants also incur entry costs, which I estimate to be sizable. These gains, how-
ever, come at the expense of reduced competition in the market. Nevertheless,
I estimate that one more firm in the market has to generate a gain in consumer
surplus that exceeds 40% of consumers’ average expenditures for coverage re-
quirements to be preferred to the subsidy. These results suggest that subsidiza-
tion is a more efficient policy than the current form of regulation.

This paper relates to the literature studying how regulation affects market
structure and market outcomes in dynamic environments. Ryan (2012) shows
that stricter environmental regulation increases entry costs, thus decreasing
both the number of firms in the market and consumer surplus. Gowrisankaran,
Lucarelli, Schmidt-Dengler, and Town (2011) study the effect of the Medicare
Rural Hospital Flexibility Program on health care provision in rural America,
and show that the program expanded coverage but had a net adverse effect
on consumer welfare due to provisions that limited the size and scope of reg-
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ulated hospitals. Dunne, Klimek, Roberts, and Xu (2013) study the effects of
entry subsidies under the Health Professional Shortage Areas program on local
market structure. Most related to this paper, Fan and Xiao (2015) estimate a
model of telephone service provider entry into local markets in the US and use
the model to evaluate the extent to which different entry subsidies would have
reduced monopolization. I extend this literature by modeling not only entry
but also the set of products firms offer and by studying the equilibrium effects
of asymmetric regulation on market outcomes.

This paper also relates to the empirical literature on technology adoption.
Schmidt-Dengler (2006) studies US hospitals’ decisions to adopt magnetic res-
onance imaging (MRI). Igami (2017) studies how cannibalization, preemption,
and incumbents’ cost advantages shape firms’ adoption of new generation hard
disk drives. My paper adds to this literature by studying how regulation affects
technology adoption. My work also differs from these papers methodologically.
Models of technology adoption must allow for time-varying demand and adop-
tion costs. The aforementioned papers apply full solution estimation methods
based on backward induction algorithms, feasible in these settings due to a fi-
nite horizon assumption (Igami (2017)) or full adoption in finite time (Schmidt-
Dengler (2006)). I instead model technology adoption as happening in an infi-
nite horizon and assume that the game has a non-stationary part followed by a
stationary part. This allows me to adapt existing iterative estimation methods
to this non-stationary setting.

My work also relates to the literature on regulation in telecommunications
markets. Björkegren (2019) studied consumer adoption of mobile phones in
Rwanda, and in that context evaluated the welfare effect of rural coverage re-
quirements imposed on the dominant mobile network operator. I add to this
work by modeling how firms respond to regulation, and moreover by doing so
in an oligopoly context. My work also relates to an earlier, mostly theoretical,
literature on universal service obligations, such as Armstrong (2001), Choné,
Flochel, and Perrot (2002), and Valletti, Hoernig, and Barros (2002). This paper
is the first to empirically quantify the effect of such regulation on service pro-
vision and the introduction of new technologies. The focus on regulation also
distinguishes this paper from recent research that analyzes infrastructure in-
vestment by mobile network operators, namely Marcoux (2022) and Lin, Tang,
and Xiao (2021).

This paper builds on a long literature on applied dynamic games, going
back to Ericson and Pakes (1995). The model I present below is a dynamic game
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with discrete controls. A number of estimators have been proposed for station-
ary dynamic games with discrete controls, e.g., Aguirregabiria and Mira (2007),
Pakes, Ostrovsky, and Berry (2007), and Pesendorfer and Schmidt-Dengler (2008).
I show that with a cross-section of markets and the notion of Quasi-Stationary
Markov Perfect Equilibria, these estimators can be applied to non-stationary
settings. Because I am interested in how different markets are affected by reg-
ulation, I allow equilibria to depend flexibly on market-level observed het-
erogeneity. I invoke a standard identification argument for (linear) dynamic
games, which goes through if equilibrium selection is continuous, a condition
for which I provide supporting evidence.

2 Institutional Setting and Data

Operators of mobile telecommunications networks transmit data through the
radio frequency spectrum, a public resource subject to government manage-
ment in most countries. Spectrum is typically allocated to firms via spectrum
license auctions. These licenses typically come with a number of conditions,
chief among them the coverage requirements that are the focus of this paper. In
Brazil, the first spectrum auction happened in 2007 and since then firms have
been suject to coverage requirements. For the purpose of this paper, a coverage
requirement is an imposition that a firm provide service in a municipality by a
deadline set by the regulator and with a minimum technological requirement
(3G or 4G).4

The Brazilian mobile telecommunications market is characterized by 7 mo-
bile network operators (MNOs), i.e., carriers that operate their own network
infrastructure. Of the 7 MNOs, four provide service in the entire country and
have held licenses covering the entire territory since the introduction of mobile
telecommunications in the country. The other three MNOs provide more lo-
calized service. There is also a handful of very small mobile virtual network
operators (MVNOs), which are carriers that do not own infrastructure and in-
stead rent network space from the MNOs. There has been no entry or exit in
this market in the past twenty years.

My analysis focuses on municipalities with less than 30,000 inhabitants. The
coverage requirements targeting these municipalities are the most likely to in-

4The requirement is considered satisfied if service is available in 80% of the municipality’s
territory.
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fluence the availability of service.5 In these markets, a single firm was required
to introduce 3G technology with varying deadlines. All the four large MNOs
are subject to a coverage requirement in some of these markets, but not all.
Though these coverage requirements target the introduction of 3G, the regu-
lated firm is considered to comply with the regulation if it deploys 4G instead.

The motivation for coverage requirements rests on two premisses. First,
mobile telecommunications services generate substantial welfare gains.6 In the
words of the Brazilian telecom regulator:7

[Mobile telecommunications technologies] create employment oppor-
tunities, improve the education system, increase firm productivity, allow
access to public digital services, among other benefits.

Second, for the intervention to be justified it must be that firms do not internal-
ize the entirety of the surplus generated by their entry and new technologies.
This seems likely, given how multifaceted these benefits are and firms’ limited
ability to price discriminate.8

The regulator enforces coverage requirements in multiple ways. First, car-
riers are required to deposit financial guarantees with the regulator, which can
be executed in case of noncompliance. Perhaps more importantly, a noncom-
pliant carrier can have its license revoked. In this case, the carrier would also
be charged the value paid for its license in proportion to the time used. The
regulator can also impose fines on noncompliant carriers.9

The main dataset used in this study comes from ANATEL, the Brazilian
telecommunications regulator. The data records the technologies (2G, 3G, and
4G) offered by each mobile network operator in all the 5,770 Brazilian munici-
palities at a monthly frequency. Figure 16 in appendix B illustrates the structure
of the data. The second important piece of data coming from ANATEL is the

5It is likely that the coverage requirements targeting larger municipalities affect the number
of firms in the market, but not the availability of service, which is the primary focus of this
paper.

6See, e.g., the references in footnote 2.
7See, https://www.anatel.gov.br/setorregulado/telefonia-movel (last ac-

cessed in October 22, 2020).
8Recent empirical results in related markets lend support to this hypothesis: using data on

the French mobile telecommunications market, Elliott, Houngbonon, Ivaldi, and Scott (2021)
estimate that the marginal social value of spectrum is five times firms’ willingness to pay for
it; studying residential broadband, Nevo, Turner, and Williams (2016) estimate a large gap be-
tween social and private incentives to invest in infrastructure.

9The final important piece of institutional detail is the process by which the identity of the
regulated carrier in each market is determined. I discuss that in appendix C.
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Figure 1: Total number of subscribers in the country, by technology.

Calculated from ANATEL’s data on subscription to mobile telecommunications services.

identity of the regulated firm in each municipality and the associated regulation
deadline.

ANATEL also provides data on the numbers of subscribers to mobile telecom-
munications services. These data are available for each carrier-technology com-
bination at a monthly frequency, first at the code-area level from February 2005
to December 2018 and then at the municipality level from January 2019 to May
2021.10 Figure 1 shows the total number of subscribers in the country by tech-
nology from January 2013 to May 2021. The figure shows that 2G has been in
decline over the period, initially being overtaken by 3G. Moreover, 3G reaches a
peak towards the end of 2015, around the time when the growth of 4G acceler-
ates. To the extent that these patterns are driven by consumer preferences, they
shape firms’ incentives to introduce new technologies. The empirical model in-
troduced below will account for this pattern in demand by allowing demand-
side parameters to vary over time.

I complement the ANATEL data with a number of datasets from IBGE, the
Brazilian Census Bureau. First, I utilize municipality demographics and char-
acteristics, such as population, GDP per capita, and area. Summary statistics on
these variables are shown in table 1. Second, I use the 2017-2018 Family Bud-
get Survey, which provides information on household income, size and expen-

10Code-areas are much coarser than municipalities. There are 67 code-areas in Brazil.
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diture on mobile telecommunications services.11 Summary statistics on these
data are provided in table 2. Third, I use the 2010 Population Census to obtain
the distribution of individual-level demographics at the municipality level.

Table 1: Summary Statistics – Municipality Characteristics

Variable N Mean Std. Dev. p10 p90

GDP Per Capita 3,449 16,221.34 20,357.61 5,440.13 30,668.74
Population 3,449 10,907.84 7,564.48 2,917.02 22,655.82
Area 3,449 1,235.85 3,963.64 110.60 2,370.71

Values are averaged over time. GDP per capita is deflated to 2013 BRL. Area is in squared
kilometers.

Table 2: Summary Statistics – Mobile Expenses and HH Characteristics

Variable N Mean Std. Dev. p10 p90

Mobile Spending 80,921 26.64 36.51 7.44 48.39
HH Income PC 80,921 2,159.54 3,962.78 557.54 4,050.98
No. Residents 80,921 2.20 1.04 1.00 4.00
Urban 80,921 0.81 0.39 0.00 1.00

Data from the 2017-2018 Family Budget Survey. The unit of observation is an individual. Mo-
bile spending is the sum of expenditures on voice and data plans, pre-paid expenditure, and
SIM cards, in BRL (deflated to 2013). “HH Income PC” is the monthly per capita income in the
household. “No. Residents” is the number of residents in the household. “Urban” is a dummy
that is equal to 1 if the individual lives in an urban area.

I drop code-areas where any of the three smaller carriers had a market share
of at least 5% at any point in time and then focus on the four major carriers.
Moreover, as mentioned above, I focus on municipalities with less than 30,000
inhabitants (in 2006). The resulting estimation sample contains 3,449 munic-
ipalities. For counterfactual exercises I focus on the subset of municipalities
where the regulation deadline was December 2019. The technology availabil-
ity data starts in early 2013 and these requirements were imposed in July 2012;
requirements in other municipalities were imposed a few years earlier. There-
fore, it is only reasonable to consider counterfactual scenarios for the December
2019 group of markets. Finally, because entering a market or upgrading a tech-
nology is a non-trivial investment that likely involves some time to build, I use
data on a semester frequency rather than monthly. The unit of observation is
thus a municipality-carrier-semester.

11This survey is the Pesquisa de Orçamentos Familiares (POF).
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Figure 2: Average numbers of firms and products (firm-technology pairs) over
time.

Figures 2 and 3 summarise the technology deployment data. Figure 2 shows,
on the left panel, the average number of firms in a market and, on the right
panel, the average number of products, where a product is a carrier-technology
combination and averages are taken across municipalities. Municipalities are
split into two groups: those with a coverage requirement with a December 2019
deadline and all the other ones.12 The figure shows an increase in the numbers
of firms and products, at a slightly faster pace for the December 2019 markets.
There is also a clear difference in levels for the two groups.

Figure 3 shows technology availability over time. The figure in the top left
shows the fraction of markets where at least 3G is available. The one on the top
right show the fraction of markets where 4G is available. The figure on the bot-
tom left shows the fraction of markets where the regulated firm has complied
with the regulation. Finally, the figure on the bottom right shows the fraction
of markets where some unregulated firm provides 3G technology or better. The
availability of 3G technology or better in the December 2019 group grows from
just over 25% of markets to 100% over the sample period. The availability of 4G
grows from zero to about 96%. The bottom panel shows that regulated firms
are more likely to provide advanced technologies since the beginning of the
sample and also introduce these technologies at a faster pace than unregulated

12This includes cases in which the regulated firm is subject to an earlier deadline – the vast
majority of cases – and cases in which the regulated firm is not one of the four large carriers.
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Figure 3: Technology availability over time.

firms.
Figure 3 suggests an important role for coverage requirements in explaining

the diffusion of new mobile telecommunications technologies. The difference
in behavior between regulated and unregulated firms is potentially composed
of two different effects of coverage requirements: a positive effect on regulated
firms and a negative effect on unregulated firms. Unregulated firms may be less
likely to enter new markets or upgrade their technologies because they know
that the regulated firm will introduce 3G by the requirement deadline. This
knowledge of tougher competition in the future may reduce the incentives of
unregulated firms to invest. See appendix A for a theoretical example, based on
Fudenberg and Tirole (1985), in which this mechanism implies that regulation
leads to a delay in technology introduction.

The data allow further investigation of these potential effects. In table 3 I
report linear probability models of firms’ technology upgrade decisions. The
dependent variable is a dummy equal to one if and only if firms choose to
upgrade their technology (or enter the market if they are not already active).
The key explanatory variables are the dummies “Regulated”, “Regulated Com-
petitor - Out”, and “Regulated Competitor - 2G”. The first of these variables
is equal to 1 when the firm is regulated, and 0 otherwise. The second is equal
to 1 when the firm faces a regulated competitor that is out of the market. The
third is equal to 1 when the firm faces a regulated competitor that has 2G tech-
nology. The omitted category includes the cases when the regulated firm has

11



complied and when the regulated firm is not one of the four large carriers. 13

The models also control for the logarithms of GDP per capita, population, and
area, and include the number of competitors with each technology.14 Moreover,
to account for unobserved municipality-level heterogeneity, these models also
include group fixed effects, where the groups are defined by a heuristic pre-
estimation step.15 The columns correspond to different subsamples according
to firms’ best technologies (out of the market, 2G, or 3G).

There are two key results in Table 3. First, regulated firms that have not
satisfied their coverage requirements are more likely to enter the market and
upgrade their technologies than firms that are not subject to regulation. Sec-
ond, unregulated firms are less likely to enter and upgrade their technologies
when the regulated competitor is either out of the market or has 2G technol-
ogy. These results show that the regulation indeed accelerates the introduction
of the new technology by regulated firms, but also that it delays the introduc-
tion of new technologies by unregulated firms. This is consistent with the entry
and technology upgrade deterrence effects outlined above. Given these two
counteracting effects, it is a priori unclear whether the regulation accelerates
the introduction of new technologies.

The rest of the paper is concerned with developing tools that allows us to
quantify the net effect of regulation on the time to introduction of new mo-
bile telecommunications technologies, as well as the entry deterrence effects al-
luded to above and the costs that the regulation imposes on firms. This requires
a model of entry and upgrade decisions.

13Because I restrict the sample to regions where the small firms have always had negligible
market shares, I interpret both of these cases as no firm being influenced by regulation.

14It may also be expected that a firm’s infrastructure in neighboring municipalities is impor-
tant for their choices. I test for that in appendix B. I do find that having service in a neighboring
municipality increases the probability of entry and technology upgrade. However, the other
coefficients change only slightly, if at all. This suggests that the choice of the regulated firm is
uncorrelated with their local network infrastructure. Indeed, in appendix B, I show that ser-
vice in neighboring municipalities does not increase the probability that a firm is regulated in
a given market. Firms’ presence in neighboring municipalities will not be included as a state
variable in the structural model, as doing so would increase the computational burden signifi-
cantly. The descriptive results discussed here, however, suggest that this omission will not bias
the inference regarding the effect of the regulation.

15Specifically, I first run a regression of the number of products on municipality and semester
fixed effects. I then project the municipality fixed effects onto (averages over time) of GDP per
capita, population, and area. Municipalities are grouped according to quintiles of the residuals
of the latter regression. Appendix B shows the results obtained estimating the model in Table 3
without the group fixed effects. The coefficients on the number of competitors are affected the
most by the group fixed effects. The other coefficients change only slightly.
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Table 3: Entry/Upgrade Models

Out 2G 3G

Log GDP PC 0.013 0.014 0.021
(0.001) (0.003) (0.002)

Log Pop. 0.026 0.049 0.000
(0.001) (0.003) (0.003)

Log Area −0.006 −0.014 0.001
(0.001) (0.001) (0.001)

Regulated 0.102 0.150 −0.034
(0.003) (0.004) (0.003)

Regulated Competitor - Out −0.017 −0.006 −0.035
(0.002) (0.006) (0.009)

Regulated Competitor - 2G −0.006 −0.051 −0.091
(0.002) (0.005) (0.007)

No. Competitors 2G −0.012 −0.007 −0.011
(0.001) (0.003) (0.002)

No. Competitors 3G −0.021 −0.013 −0.002
(0.001) (0.003) (0.003)

No. Competitors 4G −0.008 −0.027 0.002
(0.001) (0.003) (0.003)

Group FE Yes Yes Yes
Ȳ 0.026 0.079 0.083
Num. obs. 92088 47074 49245

Linear probability models. The dependent variable is a dummy equal to 1 if a technology
upgrade is observed. The explanatory variables are, in this order: the natural logarithms of
GDP per capita, population, and municipality area, a dummy that is equal to 1 if the firm is
regulated, a dummy that is equal to 1 if the firm faces a regulated competitor that is out of
the market, a dummy that is equal to 1 if the firm faces a regulated competitor that has 2G
technology, and the numbers of competitors with 2G, 3G and 4G technology. Each column
corresponds to the subsample of the data where firms’ best technology is as indicated in the
column heading.
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3 Model

The model operates at the level of a municipality. Firms’ flow profits depend
on their own technologies, their competitors’ technologies, and the local distri-
bution of consumers’ demographic characteristics. Inactive firms make entry
decisions, and both entrants and incumbents choose what technologies to offer
in the market; firms incur sunk costs of entry and technology upgrade. In each
market a single firm is required to provide 3G technology by an exogenously
specified deadline. If it fails to do so, it pays a fine every period, until it does
introduce 3G.

Each market has four potential firms. The available technologies are 2G, 3G,
and 4G. I assume that firms offer every technology less advanced than their best
technology.16 Time is discrete and the horizon is infinite. Within a period, the
timing of the game is as follows. In the beginning of each period t incumbent
firms earn their flow profits. Each firm then privately observes action-specific
cost shocks, and firms make simultaneous choices. Potential entrants can enter
with any technology and incumbents can choose to upgrade to any technology
that is more advanced than their current technology. After choosing an action,
firms pay the associated costs. Firms start period t + 1 with the technologies
chosen in period t.

Let sfmt denote firm f ’s technology in market m and period t: sfmt ∈ S :=

{0, 2, 3, 4}, where sfmt = 0 denotes that firm f is out of the market and the other
values correspond to each of the available technologies (2G, 3G, and 4G). The
market’s technological state smt ∈ S4 is a vector recording each firm’s technol-
ogy. Firms’ flow profits are given by a time-varying function of the market’s
technological state s and the distribution Hm

x of demographics x in market m:
πt(s,H

m
x ). The specification of πt is deferred to subsection 3.3.

Entry and technology upgrade are costly. The modeling of these costs re-
flects the fact that entry requires the installation of passive infrastructure, i.e.,
cell phone towers. Moreover, service provision requires the installation of technology-
specific active infrastructure, the radios or transmitters. The specification of
technology upgrade costs also reflects the fact that the costs of introducing new
technologies fall over time.17 Firms know the dynamics of flow profits and en-

16This assumption is broadly consistent with the data. Carriers typically keep old technolo-
gies in place as a fallback option. This assumption also reduces the dimension of the state space
considerably, making the model computationally tractable.

17The cost of installing 2G is not allowed to vary over time, reflecting the fact that 2G is an
old technology at the beginning of my sample period.
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try and technology upgrade costs.
Formally, costs are modeled as

ct (a, sf , zm, ε) =

−ε(a) if a = sf∑a
{g′:g′>sf} z

′
mθg′,t + 1 (sf = 0) z′mθe − ε(a) if a > sf

(1)

In equation 1, a ∈ {sfmt, . . . , 4} is the action chosen by the firm, sf is firm f ’s
state, and zm is a vector of observed market characteristics. The term ε(a) is
an action-specific cost shock, ε is a vector collecting all the ε(a), and the θ’s
are parameters to be estimated. If a = sfmt, the firm pays no costs (other than
receiving the cost shock). A potential entrant that decides to enter pays an entry
cost z′mθe. Moreover, associated with every technology g there are installation
costs z′mθg,t. The summation in equation (1) reflects the previous assumption
that firms offer all technologies less advanced than their best technology. If,
for example, a firm’s current best technology is 2G, and that firm upgrades
to 4G, equation (1) says that the firm will pay the costs of installing both 3G
and 4G.18 The cost shocks are assumed to be independent across firms, periods,
and actions, and they follow a Type 1 Extreme Value distribution with scale
parameter λ.

In each market m, exactly one firm is required to provide 3G service by a
date Tm exogenously specified by the regulator. I will call that firm the regulated
firm and the other firms the unregulated firms. A regulated firm that does not
provide 3G technology or better by Tm + 1 pays a fine φ and does so every
period until it complies with the regulation.

Firms choose their actions to maximize their discounted expected profits,
taking their competitors’ behavior as given. I focus on Markov Perfect Equilib-
ria (MPE), as is common in empirical applications of dynamic games. I allow
regulated and unregulated firms to behave differently, but beyond that I impose
symmetry.

3.1 Symmetric Markov Perfect Equilibria

A Markov Perfect Equilibrium is a strategy profile (σ1, . . . , σ4), such that σi is a
function that maps a firm’s state variables into a feasible action and maximizes
firm i’s expected discounted profits given the behavior of its competitors. In

18This implies that an entering firm will always offer 2G. Because the cost of installing 2G is
only paid by an entering firm, θe and θ2G are not separately identified. Therefore, in estimation
I drop θ2G. The estimate of θe thus includes both entry costs and 2G installation costs.
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a symmetric Markov Perfect Equilibrium, strategies do not depend on firms’
identities. Instead, I define value and policy functions for regulated and un-
regulated firms. To simplify the notation, I subsume all the market-specific
variables that do not vary over time in a superscript. The state of an unregu-
lated firm f is (sf , sr, s−, t, ε), where sf is that firm’s technology, sr is the tech-
nology of the regulated firm, and s− is a vector with the technologies of the
other two firms. The state of a regulated firm f is (sf , s−, t, ε) where now s−

denotes the technologies of the three remaining firms. Let Ω0,Ω1 denote the
state space for unregulated and regulated firms, respectively, with typical ele-
ment ωr, r ∈ {0, 1}. A strategy is a function σr : Ωr → {0, 2, 3, 4} satisfying the
restriction that σr(ωr) ∈ A(s1(ωr)) := {s1(ωr), . . . , 4}, where s1(ωr) is the first
coordinate of ωr, i.e., the firm’s current technology.19

Let σm = (σm
0 , σ

m
1 ) be a symmetric strategy profile. Define the implied ex-

ante value function

V m
r,σm(s, t) := Eε

{ ∞∑
τ=t

δτ−t
[
πm
τ (sfτ , s−f,τ )− cmτ (afτ , sfτ )+

+εfτ (aτ )− φr1 (Tm < τ, sfτ < 3)
]∣∣∣r, s, t;σm

}
where m indicates the market, r ∈ {0, 1} is equal to 1 if the firm is regulated
and zero otherwise, Eε indicates that the expectation is taken over the sequence
of ε’s for all firms, and firms’ states evolve according to (σm

0 , σ
m
1 ). Symmetry

implies restrictions on σ0, σ1, V0, V1. For details, see appendix D.
Finally, note that the recursive characterization of Markov Perfect Equilibria

(e.g., Doraszelski and Escobar (2010)) implies that {σm
0 , σ

m
1 } is a symmetric MPE

if and only if

σm
r (s, t, ε) = argmax

a∈A(sf)

{
πm
t (sft, s−f,t)−cmt (a, sf )+δEε−f

[
V m
r,σm

(
a, s′−f , t+ 1

)
|r, s, t

]
+ε(a)

}
(2)

where, for firms h ̸= f , s′h = σm
rh
(s, t, εh) and the expectation is with respect to

the shocks εh of firms h ̸= f .
19In the absence of the distinction between regulated and unregulated firms and under sym-

metry, the state variables could be defined to be a firm’s own technology and the numbers
of competitors with each technology. Here, however, we must keep track of the technology
of the regulated firm, as its incentives differ from those of unregulated firms. The symmetry
restriction is then imposed via restrictions on policy and value functions.
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3.2 Quasi-Stationary Markov Perfect Equilibria

The environment just introduced has two sources of non-stationarity. First, flow
profits and entry and technology upgrade costs vary over time. Second, cover-
age requirements imply that firm behavior depends on the date. Suppose that
the regulated firm has not satisfied its commitment and t < Tm; as time goes by,
the regulated firm gets closer to being fined and therefore should become more
likely to comply with the regulation. Unregulated firms respond to this change
in behavior. Thus, conditional choice probabilities vary over time. Therefore,
stationary Markov Perfect Equilibrium is not an appropriate solution concept.
In this subsection, I introduce assumptions that respect these two sources of
non-stationarity but beyond that impose that behavior is independent of the
date.

I will assume that entry and technology upgrade costs and flow profits vary
over time (in a way known to firms) but stabilize at a date known to the firms
and the econometrician.20 I then make two assumptions regarding equilibrium
behavior. First, after parameters have stabilized and the regulated firm has
complied with the regulation, behavior ceases to depend on the date. Second,
the same holds if parameters have stabilized and the regulation deadline has
passed. In the latter case, though firms still have to account for the presence of
regulation, it affects the environment in a way that does not change over time.

Formally, I focus on Quasi-stationary Symmetric Markov Perfect Equilibria, de-
fined below. Let Tθ denote the earliest time period such that flow profits and
costs do not vary after Tθ.

Definition 1. A Symmetric Markov Perfect Equilibrium (σ0, σ1) is said to be
quasi-stationary if there exist functions σ̃r(s, ε), r ∈ {0, 1}, such that, if either

(i) t ≥ max{Tm + 1, Tθ}, or

(ii) t ≥ Tθ and sr ≥ 3,

then σr(s, t, ε) = σ̃r(s, ε).

I assume throughout that the data is generated by a Quasi-Stationary Sym-
metric Markov Perfect Equilibrium. Note that this imposes restrictions on value
functions over time. Essentially, the model has a non-stationary phase followed
by a stationary phase. Models of technology adoption must somehow contend
with the fact that the demand for and costs of adopting a new technology vary

20Specifically, costs and flow profits vary yearly until 2018, after which they stabilize.
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over time. One way of dealing with the time-varying nature of demand and
costs is to assume a finite horizon and solve the game by backward induc-
tion; see, e.g., Igami (2017). That method raises the issue of assigning con-
tinuation values to different states in the final time period. In Igami (2017),
that is done by assuming that the state of the industry does not change after
the terminal period, and computing the implied discounted stream of profits.
Quasi-stationarity instead assumes that firms will keep playing the entry and
technology upgrade game forever, so that firms’ continuation values are given
by the equilibrium value function in the relevant states.

3.3 Modeling Flow Profits

It is not uncommon in applications of dynamic games for flow profits to be de-
rived from an estimated demand system paired with an assumption on firms’
pricing behavior. Following that route would require data on available mobile
telecommunications bundles, their prices, and consumers’ choices. Unfortu-
nately, such data is not available in my setting. I thus follow a different ap-
proach that requires data on the quantities of subscribers to different technolo-
gies and consumers’ expenditures. Suppose that consumer i in market m with
demographic characteristics xi chooses what carrier to subscribe to, what tech-
nology to use, and how much to spend on mobile telecommunications services,
ei. Let µfgt(s,H) be the resulting market share of firm-technology pair (f, g) in
period t when the industry state is s and the distribution of demographics is H ;
a model for µfgt will be specified below. Let M be the size of the market and,
as before, let sf be firm f ’s state.21 Finally, denote by Et[ei|g] the expectation of
consumers’ expenditures ei, conditional on a consumer choosing technology g

21I set the market size to be twice the population of the municipality.

18



in period t.22 Assuming zero marginal costs, firms’ profits are given by23

πt(sf , s−f , H) = M
∑
g∈sf

µfgt(s,H)Et[ei|g]

= M
∑
g∈sf

µfgt(s,H)

∫
E[ei|g, xi]dHt(xi|g) (3)

The summation over g ∈ sf is over all technologies offered by firm f : {g :

2 ≤ g ≤ sf}. Note that in equation (3), the conditional distribution Ht(xi|g)
is indexed by t. That is because consumer preferences over technologies are
allowed to vary over time (as indicated by the t subscript in µfgt), so that the
distribution of demographics conditional on technology choice also varies over
time. In contrast, the conditional expectation of expenditures E[ei|g, xi] is as-
sumed to be time-invariant.

I do not observe consumer expenditures together with their technology (and
carrier) choices. I will therefore make the following assumption:

Assumption 1. E[ei|g, xi] = E[ei|xi].

This assumption says that conditional on individual characteristics xi, con-
sumer expenditure is mean independent of the technology chosen by that con-
sumer. This is, admittedly, a strong assumption. It would hold in a world in
which consumers pay per usage (a popular model in Brazil) and technology
doesn’t affect usage. This assumption would fail if better technologies induce
consumers to use more data. Assumption 1 would thus be untenable if we were
dealing with users of high-bandwith applications. Because we are dealing with
small municipalities in Brazil, the assumption is more palatable. Importantly,
Assumption 1 does not imply that consumers that subscribe to different tech-
nologies spend (on average) the same amount, for individuals with different
demographic characteristics are still allowed to sort into different technologies.

22Here I condition only on technology, and not on firm identity, because firms are assumed
to be symmetric.

23The expression on the right hand side of 3 is an approximation. Firms’ profits are equal
to
∑

g∈sf

∑
i∈fg ei, where the second summation is over individuals i subscribing to firm-

technology pair (f, g). This approximation holds in the sense that the difference between firms’
profits and the right hand side of equation 3 is Op(

√
M), whereas the included term is O(M).

This approximation is analogous to the (implicit) approximation to profit functions used rou-
tinely in empirical industrial organization.
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Assumption 1 and equation 3 imply that

πt(s,H) = M
∑
g∈sf

µfgt(s,H)

∫
E[ei|xi]dHt(xi|g) (4)

I model µfgt(s,H) as arising from a nested logit model. Specifically, con-
sumer i’s utility of subscribing to firm-technology pair j = (f, g) in market m
and year τ is given by24

uijmτ = γr(m),p(τ) + µg(j),p(τ) + βg(j),p(τ)ymτ + θg(j),p(τ)dmτ︸ ︷︷ ︸
vg(j)mτ

+ξjmτ+ζimτ (ρ)+(1−ρ)εijmτ

(5)
where r(m) is the state of municiality m, p(τ) ∈ {E,L} groups periods into an
early (2015 and earlier) and late (2016 onwards) phase, and g(j) is the technol-
ogy of the firm-technology pair j. Moreover, ymτ is GDP per capita, and dmτ

is population density.25 The term ξjmτ is an unobserved product characteristic,
ζimτ (ρ) is a disturbance common to all goods other than the outside good, and
εijmτ is a Type 1 Extreme Value shock. The parameter ρ is the nesting parameter,
and ζimτ (ρ) has the unique distribution such that [ζimτ (ρ) + (1− ρ)εijmτ ] has an
extreme value distribution (see Cardell (1997)).

In equation (5), γr(m),p(τ) is a state-phase fixed effect meant to capture vari-
ation in the share of the outside good and µg(j),p(τ) is a technology-phase fixed
effect, which captures changes in technology popularity over time. The effect of
income and population density on consumer preferences varies by technology
and phase. For example, one might expect the effect of income on preferences
for 4G relative to alternative technologies to decrease over time, as the tech-
nology becomes more diffused, handsets become more affordable and more
consumers desire to join networks that require 4G technology.

The distributional assumptions above imply that market shares are given by

µjmτ (s, vmτ , ξmτ ) =
e(vg(j)mτ+ξjmτ )/(1−ρ)

D
× D1−ρ

1 +D1−ρ
(6)

where vm,τ is a vector collecting the vgmτ , ξmτ is a vector similarly defined, and

24I specify equation 5 at the year level because the included demographics are observed with
that frequency. A period in the dynamic game is mapped to its corresponding year and the
model above is used to compute shares.

25Using yi in equation 5 would add one more integration to the estimation routine and thus
add to the computational cost. In what follows, when calculating Ht(x|g), I treat the coefficient
on ymτ as the effect of an individual’s income on her utility.
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D :=
∑

j∈s e
(vg(j)mτ+ξjmτ )/(1−ρ), where the summation is over the products offered

in the market. The predicted quantity of subscribers is Mµjmτ (s).
I assume that individual i’s expenditure, ei, is given by

log(ei) = αr(i)u + α1 log(yi) + α2ni + ηi , (7)

where r(i) indicates i’s state of residence; u indicates whether the municipality
is classified as urban or rural by the Census; yi is income; ni is household size;
and ηi is an error term that is uncorrelated with the included regressors. The fi-
nal ingredient needed to compute firms’ profits in equation 4 is the distribution
Ht(xi|g). I obtain that distribution using the technology choice model above
and Census data on municipality-level demographics; for details, see section 4.

The final aspect of the model is an assumption regarding the distribution
of ξjmτ . I introduce this assumption to deal with the fact that I observe the
quantities of subscribers at different levels of geographic granularity over time;
see section 4 for details.

Assumption 2. Let c(m) denote the code-area that municipality m belongs to.
There exists a distribution F such that the unobserved product characteristic
ξjmτ satisfies

ξjmτ = ξjc(m)τ + ηjmτ

where ηjmτ
iid∼ F and EF [ηjmt] = 0.

Assumption 2 says that ξjmτ can be decomposed into a random variable that
varies only across code-areas, on which I place no restrictions, and another ran-
dom variable that varies across municipalities within a code-area, that I assume
is iid with some unrestricted distribution F .

Let ωm be the fraction of the population in area-code c in municipality m.
Under Assumption 2, an argument relying on a large number of municipalities
within a code-area c implies that

µjcτ =
∑
m∈c

ωm

∫
µjmτ (smτ , vmτ , ξc(m)τ + ηmτ ; θ)dF (ηmτ ) (8)

holds approximately.26 I will use equation (8) in estimation; see section 4.

26See appendix E for details.
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4 Identification and Estimation

I start this section by discussing the estimation of the flow profit function in sub-
section 4.1. In subsection 4.2 I discuss the estimation of the dynamic parameters
of the model, i.e., the entry and upgrade costs and the fine for non-compliance
with the regulation.

4.1 Identification and Estimation of the Flow Profit Function

Computing profits requires three objects: µfgt(s,H), E[ei|xi], and Ht(xi|g) – see
equation (4). The data on market shares for the 2013-18 period is at the code-
area level and for the 2019-20 period at the municipality level. Using the mu-
nicipality level data, I can proceed as follows. Equation (6) implies (see S. Berry
(1994)):

log(sjmt)− log(s0mt) = vg(j)mt + ρ log(sj|Jmt) + ξjmt (9)

where sj|Jmt is the share of good j in the total number of subscriptions in the
market. This equation yields ξjmt as a function of data and parameters, ξjmt(θ).
The term vg(j)mt contains municipality characteristics that are assumed to be
uncorrelated with ξjmt. Nevertheless, log(sj|Jmt) is a function of ξjmt. I interact
ξjmt(θ) with instruments Z1

jmt to form moment conditions E[ξjmt(θ)Z
1
jmt] = 0.

The intuition for the identification of the nesting parameter ρ is similar to
that in S. T. Berry and Waldfogel (1999). The nesting parameter determines the
extent of business stealing. If we can exogenously vary the number of products
in the market, we learn the value of ρ by observing the effect on the aggregate
share of the inside goods. Following this intuition, I exploit coverage require-
ments themselves as a source of exogenous variation in the number of products
in the market. The number of regulated firms in a municipality is a function
only of population measured in 2006 and 2012, which are credibly uncorrelated
with ξjmt. Therefore, I use the number of firms subject to 3G and 4G coverage
requirements as instruments for log(sj|Jmt).

The moments discussed above are informative about the nesting parameter
and preference parameters in the later period of the data, but not in the earlier
period of the data. To construct additional moments to identify those parame-
ters, I leverage assumption 2 and equation (8). Equation (8), repeated here for
convenience, states that market shares at the area-code level are approximately

22



given by

µjct =
∑
m∈c

ωm

∫
µjmt(smt, vmt, ξc(m),t + ηmt; θ)dF (ηmt) (10)

Equating observed market shares at the area-code level with their predicted
counterparts in equation 10, one can solve for ξjct as a function of data and
parameters. These structural error terms, ξjct(θ), can then be interacted with
instruments to form moment conditions E[ξjct(θ)Z2

jct] = 0. The one hindrance
to this approach is the integration with respect to F (ηjmt). Here, again, assump-
tion 2 offers a solution. Given any vector of structural parameters, θ, equation
(9) gives ξjmt(θ). We can then use assumption 2 to recover η̂jmt(θ), which gives
us an empirical distribution of ηjmt given θ, F̂ (η; θ). The integration in equation
(10) can be performed for any guess of θ by sampling from F̂ (η; θ).

To summarise the preceding discussion, the steps involved in evaluating the
GMM objective function for a given value of θ are as follows. First, use equation
(9) to obtain ξjmt(θ). Second, use assumption 2 to obtain ηjmt(θ). Third, solve
for ξjct(θ) from

sjct =
∑
m∈c

ωm
1

Ns

Ns∑
i=1

µjmt(smt, vmt, ξc(m),t + ηi; θ) (11)

where sjct is the observed market share of firm-technology pair j in area-code
c and period t, ηi is a vector of |Jmt| independent draws from F (η; θ) and Ns is
the number of simulation draws. Fourth, interact ξjmt with Z1

jmt and ξjct with
Z2

jct and average, to get sample analogs of the moment conditions discussed
above, ḡ1(θ) and ḡ2(θ). For a chosen weight matrix W , the GMM objective is
then given by

J(θ) :=
(
ḡ1(θ)′ ḡ2(θ)′

)
W

(
ḡ1(θ)

ḡ2(θ)

)
(12)

The GMM estimator is, as usual, θ̂ := argminθ J(θ). I have discussed the instru-
ments Z1

jct above. The instruments Z2
jct used in estimation are the population-

weighted averages of the demographics included in vgmt. I use the identity
matrix as the weighting matrix.

The term E[ei|xi] in equation (4) is calculated from equation (7), which is
estimated by ordinaty least squares using the Household Budget Survey. From
(7) it follows that E[eim|xi] = exp(αr(m)u + α2ni)y

α
i E[exp(ηim)|xi]. I assume that

exp(ηim) is mean independent of xi and estimate E[exp(ηim)] using the residuals
from equation (7).
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Finally, the conditional distribution Ht(xi|g) is obtained by Bayes’ rule:

ht(xi|g) =
µt(g|xi)h(xi)∫
µt(g|x′

i)h(x
′
i)dx

′
i

(13)

The term µt(g|xi) is derived from the technology choice model; the uncondi-
tional distribution of xi comes from the Census data. I obtain ht(xi|g) by draw-
ing a uniform random sample from the municipality-level Census data, com-
puting µt(g|xi) for each draw xi, and calculating µt(g|xi)/

∑
j µt(g|xj).

4.2 Identification and Estimation of Dynamic Parameters

The flow payoffs of the dynamic game are linear in the structural parame-
ters. For dynamic games with linear flow payoffs, it is possible to show that
structural parameters are identified if conditional choice probabilities are iden-
tified.27

The conditional value functions inherit the linearity from the flow payoffs:
there exist functions frt,Pm(a, s) and grt,Pm(a, s, z) such that

λ−1vmr,t(a, s) = frt,Pm(a, s) + grt,Pm(a, s, z)′λ−1Ψ

where Ψ is a vector collecting all structural parameters (see appendix F for de-
tails). Since the idiosyncratic errors follow a Type 1 Extreme Value distribution,
the conditional choice probabilities have the logit form:

Pm(a|s, r, t) =
exp(vmr,t(a, s)/λ)∑

a′∈A(sf )
exp(vmr,t(a

′, s)/λ)

We can apply the usual logit inversion to this equation to obtain:

ln(Pm(a|s, r, t))− ln(Pm(sf |s, r, t)) =
vmr,t(a, s)

λ
−

vmr,t(sf , s)

λ

Using the linear representation of the conditional value functions we can
then write

hm(a, s, r, t) =

[
grt,Pm(a, s, z)− grt,Pm(sf , s, z)

]′
Ψ

λ
(14)

where hm(a, s, r, t) := ln(Pm(a|s, r, t))−ln(Pm(sf |s, r, t))−frt,Pm(a, s)+frt,Pm(sf , s).
Equation (14) leads to an OLS-like formula for Ψ/λ. Moreover, as shown in ap-

27This is a known result, see, e.g., Aguirregabiria and Nevo (2013). I review the argument for
completeness.
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pendix F, the first coordinate of Ψ is 1, so that λ is also identified.
The intuition for identification is that the structural parameters are identi-

fied by exogenous variation in (πm, zm, s, r, t) and the fact that we observe how
firms respond to this variation. For example, varying a municipality’s area
while holding constant variables that affect firms’ flow profits identifies how
area affects investment costs. Note that we can do so for firms that have 3G
technology, so we identify the effect of area on the cost of 4G. Knowing that we
can move to firms that have 2G, so we identify the effect of area on the cost of
3G, and then we move to potential entrants. The fine parameter φ is identified
by the difference in behavior between regulated and unregulated firms. Time
variation also helps to identify φ. Intuitively, for small φ the behavior of reg-
ulated firms will change only slightly as the regulation deadline approaches;
large φ, on the other hand, should lead to larger changes in behavior as time
goes by.

Note that the argument above refers to municipality-specific CCPs Pm, and
indeed in estimation and counterfactuals I allow for municipality-specific CCPs.
Doing so fully exploits observed market-level heterogeneity and is at the ser-
vice of the economic and policy questions that motivate this paper.28 Regard-
less, CCPs Pm have to be recoverable from the data. For this to be the case, it
is sufficient that there be a unique (quasi-stationary, symmetric) MPE for each
market and that the map from market-level observables to MPE be continuous.
Under these conditions, one can use nearby markets (in the space of observ-
ables) to estimate a market’s CCPs.29 Figure 17 in appendix F provides evidence
in favor of continuity. Computational experimentation supports uniqueness.
Finally, observe that the CCPs also vary with t due to non-stationarity. In both
cases, it is important to observe a large cross-section of markets, as is the case
in the present paper.

I apply the Nested Pseudo Likelihood (NPL) algorithm of Aguirregabiria
and Mira (2007) to estimate the dynamic parameters. In light of the results of
Pesendorfer and Schmidt-Dengler (2010), my choice of estimator requires some
justification. A popular alternative is to use a two-step estimator, e.g. Bajari,
Benkard, and Levin (2007), Pakes et al. (2007) or Pesendorfer and Schmidt-
Dengler (2008). These estimators all proceed by flexibly estimating policy func-
tions in a first stage and then using those policy functions to construct a second-

28An alternative but coarser approach would be to group markets with similar observables
and posit that the data comes from a unique equilibrium within each group, as in Dunne et al.
(2013).

29See De Paula (2013) for a related discussion.
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stage objective function that is minimized to yield structural estimates. Because
of the high degree of flexibility I require of CCPs, I opt to use an estimator that
makes fuller use of the already imposed structural assumptions.

The maximum likelihood estimator is a natural option, but its computa-
tional cost is prohibitive in the case of dynamic games. I thus adopt Aguirregabiria
and Mira (2007). An alternative that was recently proposed is Dearing and
Blevins (2019).30 The estimator proposed by Dearing and Blevins (2019) enjoys
good theoretical properties. In particular, it is guaranteed to converge, thus
overcoming the main issue of NPL raised by Pesendorfer and Schmidt-Dengler
(2010). However, that algorithm requires solving large systems of linear equa-
tions, which renders its application to the empirical setting in this paper sub-
stantially costlier than Aguirregabiria and Mira (2007).

A Nested Pseudo Likelihood (NPL) fixed point is a pair (θ̃, {P̃m}m) that sat-
isfies

(i) θ̃ = argmaxθ
∑

m,t,f lnΨ(afmt|smt, rfm, t,m; θ, P̃m)

(ii) P̃m = Ψ(P̃m; θ̃) for all m

where Ψ(afmt|smt, rfm, t,m; θ, P̃m) is the probability that action a is optimal at
state (smt, rfm, t) in market m, when the firm believes that its competitors’ and
its own behavior will follow the CCPs P̃m from t+1 onwards, and Ψ(P̃m; θ̃) is an
array collecting all such probabilities. The NPL estimator is the NPL fixed point
with the maximum value of the pseudo-likelihood. The set of NPL fixed points
is known to be non-empty but need not be a singleton. Therefore, the researcher
must explore the parameter space to ensure that the pseudo-likelihood is being
maximized in the set of NPL fixed points.

In practice, one finds NPL fixed points via an iterative algorithm. Starting
with a guess for CCPs, {P̃m}m, the implied pseudo likelihood is maximized.
One then uses the resulting guess for θ to update firms’ CCPs. These two steps
are repeated until the CCPs and the structural parameters converge.

5 Estimation Results

In table 4 I present estimates of the parameters in the market-share model. In
table 5 I present estimates of the expenditure equation. The effect of income
on a technology’s utility is stronger the more advanced the technology, both in

30See also Aguirregabiria and Marcoux (2021) for a related recent contribution.

26



the early and late periods. This suggests that individuals with higher earnings
make more frequent use of high-bandwidth applications of mobile telecommu-
nications. Population density also increases the demand for mobile telecommu-
nications services, and to a similar degree for all technologies. This is consistent
with individuals in more densely populated areas having more social connec-
tions and thus higher demand for mobile telecommunications services. Table
5 shows that expenditures in mobile telecommunications are increasing in in-
come and household size, perhaps because individuals in larger households
have more reasons to communicate.

Table 4: Parameter Estimates – Market Shares

Variable Phase Technology Estimate 2.5 Quantile 97.5 Quantile

GDP early 2G 0.121 -0.186 0.598
GDP early 3G 0.322 -0.072 0.827
GDP early 4G 0.869 0.457 1.466
GDP late 2G -0.425 -0.665 0.121
GDP late 3G -0.304 -0.600 0.230
GDP late 4G 0.184 -0.086 0.806
Intercept early 3G -2.032 -3.192 -0.704
Intercept early 4G -9.226 -11.727 -7.100
Intercept late 3G -0.334 -1.447 1.108
Intercept late 4G -4.150 -5.618 -2.159
Pop Density early 2G 0.268 0.060 0.490
Pop Density early 3G 0.297 0.159 0.541
Pop Density early 4G 0.302 0.104 0.539
Pop Density late 2G 0.442 0.026 0.557
Pop Density late 3G 0.420 0.105 0.502
Pop Density late 4G 0.434 0.031 0.463
Nesting Parameter 0.262 0.126 0.392

This table displays GMM estimates of the market share model. A combination of the Variable,
Phase, and Technology columns defines a parameter in the model. GDP and Pop Density are
the logarithms of GDP per capita and population density. The Estimate column shows the
point estimate and the final two columns define a 95% confidence interval for the respective
parameter. The confidence interval is calculated by bootstrap, which is performed at the area-
code level. The estimated models also include state-phase fixed effects.

Regarding the dynamic parameters, I estimate the median entry cost (which
accounts for the cost of setting up 2G service) to be equal to 5.33 million BRL, the
fifth and ninety-fifth percentiles being 4.99 million and 5.53 million BRL. This
variation is due to differences in municipality area. The cost of non-compliance
with the regulation, φ, is estimated to be 1.51 million BRL, or 28.35% of the
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Table 5: Expenditure Equation

Log of Expenditures

Log Income 0.360
(0.004)

Number of Residents 0.029
(0.002)

State * Rural/Urban FE Yes
Num. obs. 72775
R2 0.201
Adj. R2 0.200

This table displays OLS estimates of equation 7.

median entry cost.
In figure 4, I plot the estimated dynamics of the cost of introducing 3G tech-

nology. I show, for the years 2014-2018, the average cost together with the tenth
and the ninetieth percentiles of the distribution – where, as before, the variation
is driven by municipality area. The average cost of introducing 3G declined
from just below 4 million BRL in 2014 to about 2.5 million BRL in 2018. Figure
5 is an analogous figure for 4G technology. I estimate a much more marked de-
crease in the cost of introducing 4G. This is consistent with the notion that 4G
was a relatively new technology in 2014. Estimates of the dynamic parameters
and confidence intervals can be found in appendix G.

6 Counterfactual Analysis

The counterfactual exercises in this section directly address the questions posed
in the beginning. In subsection 6.1, I analyze the effect of coverage require-
ments on the time to introduction of 3G technology, quantify the cost that the
regulation imposes on firms, and measure equilibrium effects. In subsection
6.2, I evaluate an alternative regulation in which the first firm to introduce 3G
technology receives a subsidy.31

31As noted in section 2, the counterfactual exercises focus on markets with a December 31,
2019 regulation deadline. There are 941 such markets in my sample. I perform the simulations
for the subset of these markets in which the regulated firm does not offer 3G technology at the
start of the data. There are 743 such markets in my sample. Moreover, when comparing the
time to 3G introduction under alternative scenarios, I only consider markets that start without
3G, of which there are 679.
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Figure 4: Estimated dynamics of the cost of 3G introduction.

The dot shows the average cost across municipalities. The whiskers indicate the tenth and
ninetieth percentiles of the distribution, where the variation is driven by municipality area.

Figure 5: Estimated dynamics of the cost of 4G introduction.

The dot shows the average cost across municipalities. The whiskers indicate the tenth and
ninetieth percentiles of the distribution, where the variation is driven by municipality area.
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Figure 6: Distribution of the Probability of Reaching 3G by December 2019
Without Regulation.

6.1 The Effect of Coverage Requirements

To quantify the effect of coverage requirements on the time to introduction of
3G technology and firms’ ex-ante expected profits, I solve the game and simu-
late data for each municipality under two regulatory regimes: under the esti-
mated fine φ̂ and setting φ = 0, i.e., with no regulation. In each case, I simulate
250 paths of play for each municipality.

The first question we can ask the model is whether coverage requirements
are really necessary. More precisely, without regulation, would 3G technology
be introduced within a reasonable amount of time? To answer this question, I
compute the share of simulations in which some firm introduced 3G technology
by December 2019. In figure 6, I show the distribution of these probabilities
across municipalities. The figure shows that just over 60% of the municipalities
in the sample would have had access to 3G technology by December 2019 with
at least 75% probability. For 33.72% of the municipalities, the probability of
having 3G access is between 50% and 75%. Therefore, for most municipalities,
market forces would most likely than not be sufficient to guarantee provision of
3G service. Nevertheless, for just over 6% of municipalities, the probability of
having 3G service by December 2019 is less than 50%. In these municipalities,
market forces are most likely insufficient to guarantee service provision.

These results may suggest that the regulation has a limited effect. However,
it may affect not only the ultimate availability of 3G but also how quickly it
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Figure 7: Distribution of the time to introduction of 3G technology or better
under alternative regulatory regimes.

is introduced. To evaluate effects on the speed of roll-out, I calculate the time
to 3G introduction under both regulatory regimes.32 In figure 7 I show the re-
sulting distributions. The label “Status quo” refers to the case φ = φ̂ whereas
“No regulation” corresponds to φ = 0. Coverage requirements reduce the av-
erage time to 3G introduction by 0.67 years, on average. The regulation also
considerably reduces the dispersion in the time to introduction of 3G, mostly
by eliminating a long right tail present in the absence of regulation. Figure 8
shows the distribution of the acceleration in the introduction of 3G due to the
regulation. The effects are concentrated between 0 and 1 year, though there is a
long right tail, consisting of the most vulnerable markets.

To further understand the determinants of the effects of the regulation, in
table 6 I project the time to introduction of 3G with no regulation and the ac-
celeration induced by coverage requirements onto observable market charac-
teristics and variables that capture the initial market structure. The dependent
variable in column 1 of table 6 is the time to 3G introduction without regula-
tion, in years. The time to 3G introduction without regulation is decreasing in
a municipality’s population and increasing in its area. The effect of GDP per
capita is not statistically significant.33 Moreover, the time to 3G introduction

32I simulate data until 2023. In those instances in which 3G is not introduced by the end of
the simulation, I set the time to 3G introduction equal to the length of the simulated sample.
Therefore, the numbers I present on the effect of the regulation are, in some cases, a lower
bound.

33GDP per capita does have a negative and statistically significat effect on the time to 4G
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Table 6: Explaining Time to Adoption and the Effect of Regulation

Time to 3G Reg. Effect

Log Area 0.604 0.208
(0.019) (0.007)

Log Population −0.651 −0.254
(0.053) (0.020)

Log GDP Per Capita 0.049 −0.008
(0.041) (0.015)

Number of Firms in t = 0 −1.594 −0.357
(0.058) (0.025)

Regulated Firm Active in t = 0 0.090
(0.017)

Intercept 7.941 1.923
(0.675) (0.249)

R2 0.728 0.629
Adj. R2 0.727 0.626
Num. obs. 679 655

The dependent variable in column (1) is the time to 3G introduction without regulation, mea-
sured in years. The dependent variable in column (2) is the acceleration of 3G introduction due
to the regulation. Municipality characteristics are averaged over time.
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is decreasing in the number of firms in the market in t = 0. These results are
intuitive: firms are more likely to enter and upgrade their technologies in more
populous markets with a smaller area to be covered; since incumbents have a
lower cost of introducing 3G than potential entrants, a larger initial number of
firms leads to faster 3G introduction.

The coefficients in the second column of table 6 show the same pattern as in
column 1, i.e., markets where, in the absence of regulation, 3G would be intro-
duced faster also experience a smaller acceleration, as one might expect. Ad-
ditionally, the estimates imply that regulating an incumbent leads to a slightly
larger acceleration than regulating a potential entrant. 34

Next, I use the model to calculate the cost that the regulation imposes on
firms.35 Solving the dynamic game under the estimated fine and under no reg-
ulation, I obtain, for each municipality, firms’ ex-ante expected profits under
those two regimes. The cost of the regulation is the aggregate difference in
firms’ ex-ante expected profits in the no-regulation and status-quo regimes:

Regulation Cost =
∑
m

∑
f

(
V m
φ=0(sf0, s−f0, t = 0)− V m

φ=φ̂(rf , sf0, s−f0, t = 0)

)

where V m
φ (ω) is the firm’s ex-ante expected profit in municipality m and state

ω when the fine is set to φ.36 I calculate that the cost of the regulation amounts
to 321 million 2010 BRL, or 183 million 2010 USD.37 This amounts to 20.04% of
firms’ aggregate ex-ante expected profits without regulation.

In table 7 I show the incidence of these costs. The first column indicates
whether or not the firm is regulated and the second column indicates its initial
state in the data. The next three columns show, respectively, the total cost, the
average cost and the fraction of the total cost borne by the respective group of
firms. Costs are shown in millions of BRL. Average costs are positive for all
groups. The regulation imposes costs on unregulated firms because it makes
competition tougher. This effect is more pronounced for firms that are active in
the market in the beginning of the data because they necessarily face tougher

introduction.
34To aid in the interpretability of the coefficient on the dummy, this regression further restrict

attention to those municipalities that had at least one active firm in the beginning of the data.
35Note that in the real world part of this cost is borne by the government via reduced revenue

in spectrum auctions.
36Note that in the first term, V m

φ=0(sf0, s−f0, t = 0), I do not include the regulation indicator
rf as an argument because there is no regulation in that case; rf does appear as an argument in
the second term.

37This conversion uses the average exchange rate in 2010 of 0.5685 USD per BRL.
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competition, whereas potential entrants are only hurt in case they enter the
market. The costs imposed on regulated firms are larger, especially when the
regulated firm is not active in the beginning of the data. Regulated firms are
forced to take actions they might not have taken in the absence of regulation.
If they are not active in the beginning of the data, they have to pay not only
technology installation costs, but also entry costs. The last column shows that
most of the costs fall on regulated firms, in particular those that have to enter
the market to comply with the regulation.

Table 7: Incidence of Regulation Cost

Regulated Initial State Total Cost Average Cost Fraction of Total Cost

0 Out 6.027 0.003 0.019
0 2G 11.781 0.033 0.037
0 3G 2.020 0.032 0.006
1 Out 267.335 0.747 0.831
1 2G 34.646 0.090 0.108

This table shows the total, average, and fraction of total costs borne by firms as a function of
their regulated status and their initial technology in the data. Total and average costs are in
millions of BRL.

Lastly, I quantify the importance of equilibrium effects. I proceed in three
steps. First, I solve the game and simulate data in the absence of regulation. I
then set the fine to its estimated value φ̂ and solve for the regulated firm’s op-
timal policy, holding the policy functions of the unregulated firms fixed. Next,
I solve for the Markov Perfect Equilibrium under regulation. The difference
between the time to adoption under the regulation equilibrium and the time
to adoption when only the regulated firm responds to the regulation gives the
desired equilibrium effects.

Figure 9 shows the distribution, across municipalities, of the equilibrium
effects. Most of the values are positive: the equilibrium adjustment leads to
a longer time to 3G introduction, relative to the case when only the regulated
firm responds to the policy. This reflects the reduced incentives to invest faced
by unregulated firms, resulting from the increased future competition induced
by the regulation. Quantitatively, however, these effects are small. The total
effects of the policy are therefore almost entirely explained by the direct effects
on the regulated firm. Appendix H provides further detail on the equilibrium
effects by looking at changes in policy functions in the two regimes.
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Figure 9: Equilibrium Effects.

This figure shows the difference between the time to the introduction of 3G (or 4G) under the
equilibrium with regulation and when only the regulated firm responds to the regulation.

6.2 Alternative Regulatory Interventions

The final question posed in the beginning of this paper was whether we can
design regulation that is more effective than coverage requirements. As before,
I am mostly concerned with two dimensions of a policy’s effect: to what extent
it accelerates the introduction of new technologies and their cost of adoption. I
will also highlight the effect of different policies on market structure.

6.2.1 Subsidizing the Introduction of 3G

The large estimated cost of non-compliance and the counterfactual results above
show that coverage requirements provide strong incentives for 3G introduction,
ensuring service provision. However, this comes at a substantial cost for firms,
especially when regulated and not active in the market.

A policy that treats firms symmetrically, instead of targeting a single firm,
may save on these costs. The intuition is simple. By providing the same in-
centive to all firms, the firm that will eventually choose to introduce the new
technology will tend to be the most cost-efficient one.

Motivated by this reasoning, I evalute a regulation that subsidizes the first
firm to introduce 3G technology or better. I denote the subsidy by β. If more
than one firm introduces the new technology, those firms split the subsidy
equally. Therefore, I add the following term to firms’ flow profits for each state
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of the game and each possible action af :

β × 1

{(
max
f ′

sf ′

)
< 3 ≤ af

}
︸ ︷︷ ︸

Subsidy is paid

×
3∑

n=0

P

((∑
f ′ ̸=f

1{af ′ ≥ 3}

)
= n

)
× 1

1 + n︸ ︷︷ ︸
Expected fraction of the subsidy

where the probabilities in this expression are are given by the ensuing equilib-
rium behavior.

I experiment with two subsidy designs. I start with a budget given by

Budget =
∑
m

∑
f

(
V m
φ=0(sf0, s−f0, t = 0)− V m

φ=φ̂(rf , sf0, s−f0, t = 0)

)
, (15)

which is simply the aggregate cost of the regulation. Note that firms would be
willing to pay this amount to move from the status quo world to a world with
a subsidy. In that sense, the subsidies considered below are self-financed.38

I start by splitting the budget in equation (15) equally across municipalities.
Figure 10 shows the acceleration in the introduction of 3G technology under
coverage requirements (labeled “status quo”) and the subsidy. The average ef-
fect is very similar; the subsidy accelerates the introduction of 3G by 0.62 years
on average, relative to 0.68 years under coverage requirements. As figure 10
shows, relative to coverage requirements, the subsidy eliminates some small
effects, but also loses some large ones. The large effects lost by the subsidy
come from municipalities that would experience relatively late introduction of
3G without regulation. Consider, for example, those municipalities where cov-
erage requirements accelerate the introduction of 3G by one year or more. The
average time to introduction of 3G without regulation in these municipalities
is more than two years larger than in the remaining municipalities. These are
relatively unprofitable markets, and the homogeneous subsidy provides less in-
centives for 3G introduction in these markets than coverage requirements. For
this group of markets, the subsidy delays the introduction of 3G by 0.7 years
relative to coverage requirements, on average.

The municipalities where coverage requirements generate small accelera-
tions (less than 6 months) are relatively competitive. The average number of
firms in t = 0 in those municipalities is 1.24, relative to 0.96 in the remaining

38The practical application of this idea is based on the observation that the alternative policies
discussed here would increase the value of spectrum licenses. Therefore, spectrum auction
revenues would increase and these increased revenues could be used to finance the subsidies
proposed here.
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Figure 10: Acceleration of 3G Introduction Under Coverage Requirements and
Subsidy

municipalities. The introduction of 3G in these municipalities in the absence of
regulation is relatively fast: 3.89 years, on average, compared to 5.44 years in
the other municipalities. In these markets, the effect of the subsidy is very close
to the mean effect, so that they are moved from the left tail of the “Status Quo”
distribution in figure 10 to the middle of the subsidy distribution. In summary,
relative to coverage requirements, a flat subsidy increases the acceleration of
3G introduction in some localities where there seems to be little need for reg-
ulation, and has smaller effects in some municipalities where regulation seems
to be particularly important.

This point is shown clearly in figure 11, where the time to introduction of 3G
in the absence of regulation is plotted against the effects of coverage require-
ments and the flat subsidy. Each dot in the figure is a municipality. For the
case of coverage requirements, we see a positive correlation: the regulation has
stronger effects in those markets where, in the absence of intervention, it would
take longer for 3G to be introduced. The flat subsidy does not display the same
correlation. In fact, for the most vulnerable municipalities the correlation seems
to be slightly negative.

In light of these results, I consider a policy that allocates a larger share of
the budget towards the most vulnerable municipalities. Specifically, let τm be
the time for 3G introduction in municipality m in the absence of regulation and
let f be a positive and increasing real function. Allocate to municipality m the
fraction f(τm)/

∑
m′ f(τm′) of the budget in equation (15). The more convex f ,
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Figure 11: Targeting Properties of Coverage Requirements and a Flat Subsidy

the stronger the targeting towards the most vulnerable municipalities. I set
f(τ) = τ 3/2.39 Figure 12 shows the results. This subsidy leads to an acceleration
in the roll-out of 3G of 0.65 years relative to 0.68 for coverage requirements and
0.62 for the flat subsidy. The municipality-specific subsidy restores the desired
positive correlation between the effect of the regulation and the time to 3G in-
troduction without regulation. In fact, this subsidy leads to larger accelerations
in the most vulnerable municipalities than coverage requirements. This comes
at the expense of slightly smaller effects in those municipalities that even in the
absence of regulation obtain access to 3G technology relatively quickly. The
optimal way to navigate this trade-off (e.g., the optimal choice of exponent in
f(τ)) depends on the relative changes in consumer surplus in those two groups
of municipalities, which cannot be quantified with the limited data available
for this study.

Firms substantially benefit from the municipality-specific subsidy relative to
coverage requirements.40 Firms’ ex-ante aggregate expected profits grow by 126
million BRL, after accounting for their financing of the subsidy; this amounts
to 9.83% of firms’ aggregate profits without regulation. These gains essentially
come from reallocating the introduction of the new technology from inactive
and regulated firms, who have to pay entry costs, to incumbents, who only pay

39This subsidy design relies on τm, and one may thus be concerned that its informational
requirements are substantial. However, note that the results in table 6 show that a substantial
portion of the variation in τm is explained by observables. Therefore, it might be possible to
design a subsidy with similar properties that relies only on data that is available to regulators.

40Similar results hold for the flat subsidy.
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Figure 12: Targeting Properties of Coverage Requirements and a Municipality-
Specific Subsidy

technology installation costs.
This reallocation leads to a more cost-efficient technology roll-out, but at the

expense of reduced competition in the market. The subsidy leads to entry of
0.93 firms, on average, by the end of 2022. In contrast, coverage requirements
lead to entry of 1.17 firms. This difference is entirely driven by those markets
where the regulated firm is a potential entrant. The average number of entrants
in these markets, under coverage requirements, is 1.60, whereas it is equal to
1.00 under the subsidy. In the remaining markets, coverage requirements result
in entry of 0.83 firms, on average; the subsidy results in entry of 0.87 firms.

The model can be used to perform a heuristic calculation that is informa-
tive of where we stand in this cost-competition trade-off. For each simulation
s, I compute the discounted number of firms present in each market: n̄s =∑T

t=0 δ
t
∑

f 1(sft > 0). I then average this quantity across simulations for each
regulatory regime to obtain an average discounted number of firms for each
regulatory regime and municipality. Combining this with municipality popu-
lation, I find that 243,303 consumers are exposed to an additional firm under
coverage requirements, relative to the targeted subsidy.41 For this added com-
petition to overturn the cost efficiency results discussed above, the average gain
in consumer surplus from one more firm has to be at least 8.21 BRL.42 This is

41The aggregate population (averaged over time) of the municipalities considered in these
counterfactuals is 3.2 million.

42This is a conservative estimate, as it assumes that the gain in consumer surplus from addi-
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equal to 44.99% of the mean predicted expenditure for these markets, thus sug-
gesting that the targeted subsidy is more efficient than coverage requirements.

7 Conclusion

Concerns regarding lack of service provision are present in many industries
and so is regulatory intervention. This paper studies the effect of coverage re-
quirements, a common form of regulation in the mobile telecommunications
industry, on the speed of roll-out of new technologies, market structure, and
firms’ profits. To do so, I use new data on mobile technology availability in
Brazilian municipalities to estimate a dynamic game of entry and technology
upgrade under regulation.

I show that the regulation accelerated the arrival of third generation mobile
telecommunications technology to relatively small and underdeveloped mar-
kets in Brazil by 0.7 years on average – and by more than 2 years in some cases.
This, however, comes at a high cost: the regulation reduces firms’ ex-ante ex-
pected profits by 20.04%. I also show that a policy that subsidizes the first firm
to introduce 3G technology, by an amount that the firms themselves would be
willing to finance, achieves a similar acceleration of 3G introduction, better tar-
gets the most vulnerable markets, and leads to a more cost-efficient roll-out.
These cost-efficiency gains are accompanied by reduced competition in some
markets, but the losses in consumer surplus needed to overturn the efficiency
gains are implausibly large. These findings have immediate implications for the
design of regulation in mobile telecommunications markets, and potentially to
other markets where universal service is also a concern.

Some interesting and related questions are not addressed in this paper. First,
though my results are informative for the design of regulation, data limitations
preclude me from conducting a complete welfare analysis. It would be inter-
esting to combine data such as the one used in this paper with detailed price
and quantity data to compare the gains in consumer surplus from earlier access
to new technologies and the regulatory costs imposed on firms. Second, my
analysis abstracted away from geographic interdependencies in firms’ costs. It
would be interesting, though challenging, to extend the model to allow for such
interdependencies. These topics, however, are left for future research.

tional entrants is constant.
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Online Appendix

Appendix A Regulation and Delay in the Fudenberg-

Tirole Model

A.1 The Model

There are two firms. Firm 1 is an incumbent and firm 2 a potential entrant.
Time is continuous and the discount rate is r. Firm 1 initially operates as a
monopolist with constant marginal cost c̄. At any point in time t ≥ 0, firms can
adopt a technology with constant marginal cost c

¯
. Adopting this technology at

time t costs C(t), where C(t) > 0, C ′(t) < 0 and C ′′(t) > 0, for all t ≥ 0.
Let pm(c) and πm(c) be, respectively, the monopoly price and profit when

marginal cost is c. I focus on the case in which the innovation is non-drastic,
i.e., pm(c

¯
) ≥ c̄. If both firms are in the market, they compete à la Bertrand.

Let πd(c, c′) be a firm’s profit when its cost is c and its competitor’s cost is c′.
Under the assumption of a non-drastic innovation and Bertrand competition,
πd satisfies

πd(c
¯
, c̄) = (c̄− c

¯
)D(c̄), πd(c̄, c

¯
) = 0 and πd(c, c) = 0 ∀c

Firms’ strategies specify their decisions to adopt or not the new technology
as a function of t and their competitor’s technology.43 Note that due to the
Bertrand assumption, a firm will never adopt the new technology after its com-
petitor has adopted, as they would incur the positive adoption cost but their
flow profits would stay at zero.

If the incumbent is first to adopt at date t1, its overall profit is

L1(t1) =

∫ t1

0

πm(c̄)e−rtdt+

∫ ∞

t1

πm(c
¯
)e−rtdt− C(t1)e

−rt1 (16)

If the incumbent is preempted at date t2, its present discounted profit is

F1(t2) =

∫ t2

0

πm(c̄)e−rtdt (17)

43The discussion here is somewhat informal. Fudenberg and Tirole (1985) provide a careful
description of appropriate strategies for this game.
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Figure 13: Payoffs in the Fudenberg-Tirole Model.

If the entrant is first to adopt at date t2, its overall profit is

L2(t2) =

∫ ∞

t2

πd(c
¯
, c̄)e−rtdt− C(t2)e

−rt2 (18)

Finally, it the entrant is preempted at time t1, its profit is given by F2(t1) = 0.
Figure 13 plots the functions L1, F1, L2, F2.44 That figure is sufficient to de-

termine the equilibrium outcome of the game.45 Let t∗2 be defined by F2(t2) =

L2(t2). In Figure 13, t∗2 ≈ 5. Firm 2 will not adopt before t∗2, as it would prefer
to be preempted by firm 1. Knowing this, firm 1 will wait to adopt, as L1(t1) is
increasing over t1 < t∗2. Now suppose firm 2 is first to adopt at some t2 > t∗2.
Since L1(t2) > F1(t2), firm 1 prefers to adopt at t2 − ε. In equilibrium, firm 1
adopts at t1 = t∗2, and firm 2 never adopts.

A.2 Incorporating Regulation

Now suppose that the incumbent is regulated: is must adopt by some exoge-
nously set deadline τ , lest it pay an exorbitant fine. The Li and Fi functions are

44The specification is as follows. D(p) = 2 − p, c̄ = 1, c
¯

= 3/4, C(t) = 1{t <=

10}
(

t2

4 − 5 ∗ t+ 25
)
+ 0.1.

45But not the equilibrium itself.
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Figure 14: Payoffs in the Fudenberg-Tirole Model with Regulation.

now defined (for ti ≤ τ ) as follows:

L1(t1) =

∫ t1

0

πm(c̄)e−rtdt+

∫ ∞

t1

πm(c
¯
)e−rtdt− C(t1)e

−rt1 (19)

F1(t2) =

∫ t2

0

πm(c̄)e−rtdt− C(τ)e−rτ

L2(t2) =

∫ τ

t2

πd(c
¯
, c̄)e−rtdt− C(t2)e

−rt2

F2(t1) = 0

Figure 14 plots these payoffs for the same parametrization underlying Fig-
ure 13, and τ = 10. As can be seen from the figure, the fact that the incumbent
will adopt the technology at time τ , at the latest, eliminates all incentive for the
entrant to adopt the new technology. With no need to preempt the entrant, the
incumbent is free to delay its own adoption to its most preferred time, which
in this example is t∗1 ≈ 9.7. Therefore, the regulation delays the adoption of the
new technology from t ≈ 5 to t ≈ 9.7. Of course, if τ < 5, the regulation speeds
up the adoption of the new technology.
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Figure 15: Regulated Carriers – Midwest.

This figure shows a map of the Brazilian Midwest, color-coded according to the identity of
the single regulated firm in each market. The subdivisions in the map are municipalities. The
municipalities without a color are either not in the estimation sample (municipalities with more
than 30,000 inhabitants in 2006) or the regulated firm is one of the small carriers. Claro, Oi, Tim,
and Vivo are the four large carriers in Brazil.

Appendix B Supplementary Figures and Alternative

Specifications of Descriptive Models

Figure 15 illustrates the result of carriers’ iterative choices of municipalities
where they would be suject to a coverage requirement. The figure shows a map
of the Brazilian Midwest, color-coded according to the identity of the regulated
carrier. Figure 16 illustrates the data on technology availability. Each cell con-
tains a map of the state of Pará, in the north of Brazil. The subdivision within
each map are the municipalities in that state. Each row shows data for one of
the four large carriers, and columns indicate the year for which the data is plot-
ted. Municipalities are color-coded according to the best technology provided
by the respective carrier in that municipality at the end of the year indicated in
the column.

The tables below report alternative specifications of the descriptive models
in table 3 in the main text. In particular, table 8 reports models without group
fixed effects, and table 9 reports models that include characteristics of firms’
networks in neighboring states. Specifically, the models include dummies for
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Figure 16: Technology availability in the state of Pará.

Each cell in this matrix contains a map of the state of Pará, in the north of Brazil. The subdivision
within the state are municipalities. Rows correspond to the four large carriers in Brazil: Claro,
Oi, Tim, and Vivo. Columns correspond to calendar years. Municipalities are color-coded
according to the best technology offered in that municipality by the relevant firm in the end of
the year.

whether or not the firm provides 2G, 3G, and 4G service in any neighboring
municipality. Comparing table 8 and table 3 shows the importance of the group
fixed effects. Without them in table 8, the competition coefficients are mostly
small in absolute value and sometimes positive. That is in contrast with the
results in table 3, where the competition coefficients are almost all negative and
larger in absolute value. This suggests that the group fixed effects capture im-
portant unobserved factors related to how desirable it is to provide service in a
given market.

Turning to table 9, the first thing to note is that service in neighboring munic-
ipalities is important. The estimated coefficients on 3G service and 4G service
are sizeable and precisely estimated. Interestingly, the coefficients on 2G service
in neighboring municipalities are negative. This is surprising because these co-
efficients are relative to not having service in the neighboring municipality. The
next thing to observe is the effect of the network variables on the competition
coefficients. These effects are mostly small, except perhaps for the number of
competitors with 4G technology. Albeit small, the effects are always in the di-
rection of increasing (in absolute value) the estimated competition coefficients.
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Table 8: Entry/Upgrade Models – Without group fixed effects

Out 2G 3G

Log GDP PC 0.002 0.001 0.015
(0.001) (0.002) (0.002)

Log Pop. 0.011 0.034 −0.008
(0.001) (0.002) (0.002)

Log Area −0.002 −0.011 0.003
(0.000) (0.001) (0.001)

Regulated 0.105 0.155 −0.035
(0.003) (0.004) (0.003)

Regulated Competitor - Out −0.015 0.001 −0.028
(0.002) (0.006) (0.009)

Regulated Competitor - 2G −0.007 −0.045 −0.089
(0.002) (0.005) (0.007)

No. Competitors 2G −0.001 0.005 −0.001
(0.001) (0.002) (0.002)

No. Competitors 3G −0.011 0.006 0.008
(0.001) (0.002) (0.002)

No. Competitors 4G 0.004 −0.011 0.013
(0.001) (0.002) (0.002)

Group FE No No No
Ȳ 0.026 0.079 0.083
Num. obs. 92088 47074 49245

Linear probability models. The dependent variable is a dummy equal to 1 if a technology
upgrade is observed. The explanatory variables are, in this order: the natural logarithms of
GDP per capita, population, and municipality area, a dummy that is equal to 1 if the firm is
regulated, a dummy that is equal to 1 if the firm faces a regulated competitor that is out of
the market, a dummy that is equal to 1 if the firm faces a regulated competitor that has 2G
technology, and the numbers of competitors with 2G, 3G and 4G technology. Each column
corresponds to the subsample of the data where firms’ best technology is as indicated in the
column heading.
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This may suggest that there are unobservable factors that are geographically
correlated. Finally, and most importantly for the analysis in this paper, note
that the effect of the network variables on the regulation variables is very mi-
nor, if present at all. This suggests that the regulation variables (in particular,
whether or not a firm is regulated) are not correlated with the surrounding net-
work infrastructure. Appendix C delves deeper into this.

Table 9: Entry/Upgrade Models – With Neighboring Network Info

Out 2G 3G

Log GDP PC 0.016 0.020 0.032
(0.001) (0.003) (0.002)

Log Pop. 0.031 0.059 0.017
(0.001) (0.003) (0.003)

Log Area −0.007 −0.019 −0.006
(0.001) (0.001) (0.001)

Regulated 0.104 0.163 −0.021
(0.003) (0.004) (0.003)

Regulated Competitor - Out −0.014 0.003 −0.024
(0.002) (0.006) (0.009)

Regulated Competitor - 2G −0.001 −0.038 −0.072
(0.002) (0.005) (0.006)

No. Competitors 2G −0.014 −0.013 −0.017
(0.001) (0.003) (0.002)

No. Competitors 3G −0.026 −0.023 −0.015
(0.001) (0.003) (0.003)

No. Competitors 4G −0.022 −0.059 −0.043
(0.001) (0.003) (0.003)

Nb. Service 2G −0.012 −0.025 −0.017
(0.002) (0.012) (0.009)

Nb. Service 3G 0.018 0.033 0.014
(0.001) (0.003) (0.006)

Nb. Service 4G 0.025 0.094 0.125
(0.001) (0.003) (0.003)

Group FE Yes Yes Yes
Ȳ 0.026 0.079 0.083
Num. obs. 92088 47074 49245

Linear probability models. The dependent variable is a dummy equal to 1 if a technology
upgrade is observed. The explanatory variables are as in table 8, with the addition of “Nb.
Service 2G”, “Nb. Service 3G”, and “Nb. Service 4G”. These are dummies indicating whether
the carrier has service of the respective technology in a neighboring municipality. Each column
corresponds to the subsample of the data where firms’ best technology is as indicated in the
column heading.

50



Appendix C Identity of Regulated Firms

The choice of the regulated firm in a given municipality occurred as follows.
First, the country was divided into 131 “service areas”. These varied substan-
tially in size, from a single municipality to an entire code area, which include
on average 83 municipalities. Within each of these service areas, the four large
carriers would take turns selecting small numbers of municipalities where they
would be subject to a requirement. This process occurs immediately after each
spectrum auction and both the total number of municipalities to be selected and
the number of municipalities chosen per turn are determined by the acquired
license. Figure 15 in Appendix B shows the result of this process. This selection
procedure may raise worries of selection into being regulated. Firms may select
markets where they already have service, as that implies lower costs of compli-
ance. Similarly, they may select markets that are close to markets they serve.
The structural model fully accounts for service in a given market, but not for
service in nearby markets.

Table 10 tests the hypothesis of no correlation between a firm’s status as the
regulated firm and that firm’s infrastructure in neighboring markets. The unit
of analysis for the models in table 10 is a firm-market pair, and only data from
the June 2013 (the first period in the data) is used. The table reports estimation
results of a linear probability model (included for the sake of interpretability)
where the dependent variable is a dummy that takes the value 1 if the firm is
regulated, and 0 otherwise. The explanatory variables are a constant and a set
of dummies. The variable “2G Service” is equal to 1 if the firm provides 2G
service in that market; “3G service” is analogously defined. “2G Service Nb.”
is equal to 1 if the firm provides 2G service in some neighboring market, and
“3G Service Nb.” is defined similarly. The results show that, conditional on the
technologies offered by a firm in the market, which are included in the struc-
tural model, its infrastructure in neighboring municipalities has a small effect
on the probability that the firm is regulated. The point estimates are in fact neg-
ative. These results suggest that there is no cause for concern that the difference
in behavior between regulated and unregulated firms, which identifies the fine
parameter φ in the structural model, is driven not by the regulation itself but by
omitted differences in firms’ neighboring infrastructure. Therefore, despite the
importance of neighboring infrastructure shown in table 9, I omit these vari-
ables from the structural model, as doing so would likely not bias the inference
regarding the effects of regulation and would increase the computational bur-
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Table 10: Testing for Selection on Infrastructure in Neighboring Municipalities

Regulated

2G Service 0.221
(0.007)

3G Service 0.219
(0.012)

2G Service Nb. −0.019
(0.016)

3G Service Nb. −0.042
(0.008)

Num. obs. 13796
R2 0.138
Adj. R2 0.137

Linear probability model. The unit of observation is a firm-municipality pair. The dependent
variable is a dummy indicating whether or not the respective firm is regulated in the market.
“2G Service” and “3G Service” are dummies indicating whether the firm has service of the
respective technology in that market. “2G Service Nb.” and “3G Service Nb.” are dummies
indicating whether the firm has service of the respective technology in a neighboring munici-
pality.

den by several orders of magnitude.

Appendix D Restrictions on Value and Policy Func-

tions

As in the main text, let Tθ be the first date after which parameters do not vary
anymore and let Tm be the regulation deadline in market m. The assumptions
of symmetry and quasi-stationarity imply the following restrictions on value
functions (and policy functions):

• V0(s1, sr, s−, t) = V0(s1, sr, P (s−), t) for any permutation P .

• V1(s1, s−1, t) = V1(s1, P (s−1), t), for any permutation P .

• In V0(s1, sr, s−), write s− = (s1−, s
2
−). If sr ≥ 3 and ∃ j ∈ {1, 2} such that

sj− ≥ 3, then V0(s1, sr, s−) = V0(s1, s
j
−, sr, s

−j
− ).

• If s1, sr ≥ 3, then V1(s1, P (sr, s−)) = V0(s1, sr, s−) for any permutation P .

• If t > Tθ > Tm, Vr(s1, s−, t) = Vr(s1, s−, Tθ).
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• If Tθ < Tm, Tθ < t and sr ≥ 3, then V0(s1, sr, s−, t) = V0(s1, sr, s−, Tθ) and
V1(sr, s−, t) = V1(sr, s−, Tθ).

Starting from the state space

Ω := {0, . . . ,max{Tm + 1, Tθ}} × {0, 1} × {0, 2, 3, 4}4 ,

we can reduce its cardinality using the restrictions above by mapping each state
to an element of the equivalence class induced by these restrictions. I do so by
using a variable-base number system to order the states in Ω and then mapping
each state to the minimal (in this order) state in its equivalence class.

Appendix E Market Shares at the Code Area Level

This appendix justifies equation 8 in the main text. That equation, repeated here
for convenience, states that market shares at the code-area level are given by

µjcτ =
∑
m∈c

ωm

∫
µjτ (smτ , vmτ , ξc(m)τ + ηmτ ; θ)dF (ηmτ ) (8)

Let hi denote the alternative chosen by a consumer i. Within a given code-
area c, we have, by the Law of Total Probability

µjc = P(hi = j) =
∑
m∈c

ωmP(hi = j|m) =
∑
m∈c

ωmµj(sm, vm, ξc(m) + ηm; θ) , (20)

where I have dropped time subscripts, ωm is the probability that the consumer
comes from municipality m in code-area c, and P(hi = j|m) is the probability
that consumer i chooses j given that she comes from market m (and thus her de-
mographic attributes come from a market-specific distribution). I will simplify
the notation further and write simply µjm(ηm) instead of µj(sm, vm, ξc(m)+ηm; θ).

I will show that plimn→∞ (
∑n

m=1 ωnmµm(ηm)−
∑n

m=1 ωnmE[µm(ηm)]) = 0. When
considering n → ∞, I am considering an infinite sequence of markets with
known µm (i.e., known characteristics (sm, vm)) and a triangular array of weights
ωnm

ω1,1

ω2,1 ω2,2

ω3,1 ω3,2 ω3,3

...
...

... . . .
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such that ωnm > 0 for all n,m, limn→∞ ωnm = 0 for all m, and
∑n

m=1 ωnm = 1 for
all n. Moreover, I assume that the ηm’s are independent – see assumption 2.

By Chebyshev’s Inequality

P

(∣∣∣∣∣
n∑

m=1

ωnm{µm(ηm)− E[µm(ηm)]}

∣∣∣∣∣ > ε

)
≤ 1

ε2

n∑
m=1

ω2
nmVar(µm(ηm))

≤ 1

ε2

n∑
m=1

ω2
nm

where the second inequality follows because µm(η) ∈ [0, 1] for all η.
Now it suffices to show that

∑n
m=1 ω

2
nm →n 0. Assume without loss of gen-

erality that wn1 = max1≤m≤n wnm. Then

n∑
m=1

ω2
nm ≤ w2

n1 + v(wn1) (21)

where

v(wn1) := max
wn2,...,wnn

n∑
m=2

w2
nm

s.t. 0 < wnm ≤ wn1
n∑

m=2

ωnm = 1− wn1

Let kn be the largest integer such that knwn1 ≤ 1− wn1, i.e., kn =
⌊
1−ωn1

ωn1

⌋
. Then

v(ωn1) ≤ knω
2
n1 + [1− (kn + 1)ωn1]

2

≤ 1− ωn1

ωn1

ω2
n1 +

(
1− 1− ωn1

ωn1

ωn1

)2

= (1− ωn1)ωn1 + ω2
n1

It follows that limn→∞ v(ωn1) = 0 and, by 21, limn→∞
∑n

m=1 ω
2
nm = 0.

Appendix F Conditional Value Functions are Linear

in Parameters

In this section I will simplify notation by letting ω denote a generic state of the
form ω = (t, r, sf , s−f ). Flow payoffs, net of the idiosyncratic shock, are given
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by
π(ω)− φr1{sf < 3, T < t} − c(a, sf , z; θ)

where c(a, sf , z; θ) is the deterministic part of costs: c(a, sf , z; θ) =
∑a

{g′:g′>sf} z
′
mθg′,t+

1 (sf = 0) z′mθe if a > sf and zero otherwise. This is a linear function of param-
eters. Abusing notation slightly, write c(a, sf , z; θ) = c(a, sf , z)θ.

Define
g(a, ω, z) := (π(ω), c(a, sf , z), r1{sf < 3, T < t})

and
Ψ := (1, θ′, φ)′

Then we have

π(ω)− φr1{sf < 2, T < t} − c(a, sf ) = g(a, ω, z)Ψ

The value function satisfies the Bellman equation

V (ω, εf ) = max
a∈A(sf )

g(a, ω, z)Ψ + εf (a) + δ
∑
ω′

V (ω′)FP (ω
′|ω, a)

where FP denotes the state transitions induced by the equilibrium conditional
choice probabilities P and

V (ω′) :=

∫
V (ω, εf )dG(εf )

Denote the equilibrium policy by σ∗(s, εf ). Then (using σ∗ as shorthand for
σ∗(s, εf ))

V (ω, εf ) = g(σ∗, ω, z)Ψ + εf (σ
∗) + δ

∑
ω′

V (ω′)FP (ω
′|ω, σ∗)

Integrating both sides of this equation yields

V (ω) =

(∫
g(σ∗, ω, z)dG(εf )

)
Ψ

+

∫
εf (σ

∗)dG(εf ) + δ
∑
ω′

V (ω′)

∫
FP (ω

′|ω, σ∗)dG(εf )
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Let C(a, ω) be the set of shocks εf ∈ R|A(sf )| such that a = σ∗(ω, εf ). Then∫
g(σ∗, ω, z)dG(εf ) =

∑
a∈A(sf )

∫
C(a,ω)

g(σ∗, ω, z)dG(εf )

=
∑

a∈A(sf )

g(a, ω, z)

∫
C(a,ω)

dG(εf )

=
∑

a∈A(sf )

g(a, ω, z)P (a|ω)

where here P (a|ω) are the equilibrium conditional choice probabilities.
Similarly, ∫

F (ω′|ω, σ∗)dG(εf ) =
∑

a∈A(sf )

FP (ω
′|ω, a)P (a|ω)

︸ ︷︷ ︸
FP (ω′|ω)

The term on the right hand side of this equation is simply the probability that
the state moves from ω to ω′, induced by the equilibrium conditional choice
probabilities. I will denote that term by FP (ω

′|ω).
Finally, observe that∫
εf (σ

∗)dG(εf ) =
∑

a∈A(sf )

∫
C(a,ω)

εf (a)dG(ε) =
∑

a∈A(sf )

P (a|ω)E[εf (a)|a = σ(ω, εf )]

It is well known that for the Type I Extreme Value distribution, E[εf (a)|a =

σ(ω, ε)] = λ(γ− lnP (a|ω)), where γ is the Euler-Mascheroni constant. Therefore∫
εf (σ

∗)dG(εf ) = λ
∑

a∈A(sf )

P (a|ω)(γ − lnP (a|ω))

Putting these pieces together, we have

V (ω) =

(∑
a

g(a, ω, z)P (a|ω)

)
Ψ+ λ

∑
a∈A(sf )

P (a|ω)(γ − lnP (a|ω))

+ δ
∑
ω′

V (ω′)FP (ω
′|ω)

or
V (ω) = EP [g(a, ω, z)]Ψ + λγ − λEP [lnP (a|ω)] + δFP (ω)V

where EP denotes an expectation with respect to a using the distribution over a
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defined by P , FP (ω) is a row vector with the transition probabilities in state ω,
and V a vector with the value function in each state ω.

We can now stack these equations. Let MP denote the transition matrix
induced by P , M = [FP (ω

′|ω)]ω,ω′ . Then46

V = EP [g(a, z)]Ψ + λγ − λEP [lnP (a)] + δMPV

From this equation we obtain

V = (I − δMP )
−1
{
EP [g(a, z)]Ψ + λγ − λEP [lnP (a)]

}
= λK(P ) + (I − δMP )

−1EP [g(a, z)]Ψ

where K(P ) := (I − δMP )
−1(γ − EP [lnP (a)])

The conditional value function is, by definition,

v(a, ω) = g(a, ω, z)Ψ + δ
∑
ω′

V (ω′)FP (ω
′|ω, a) = g(a, ω, z)Ψ + δFP (ω, a)V

where FP (ω, a) is the distribution over ω′ induced by taking action a in state ω

when competitors follow P . Using the result above for V yields

v(a, ω)

λ
= δFP (ω, a)K(P ) +

{
g(a, ω, z) + δFP (ω, a)(I − δMP )

−1EP [g(a, z)]
}
λ−1Ψ

Finally, the analysis in the main text allows for municipality-specific equi-
libria Pm. As noted there, for the usual identification argument, based on the
derivation above, to go through, it is sufficient that the map from market-level
observables to the quasi-stationary symmetric Markov Perfect Equilibrium be
continuous. Figure 17 provides evidence in favor of that. Each panel shows
data for one of four randomly sampled municipalities. Each dot in a scatterplot
corresponds to one of the other 742 municipalities that are part of the 3G coun-
terfactuals. The x-axis is the Euclidean distance of the demographics of the two
municipalities (a vector containing the time series of GDP per capita, popula-
tion, and area). On the y-axis is the Frobenius distance of the conditional choice
probability matrices of the two municipalities.47 These scatterplots show that
as the distance of demographics goes to zero so does the distance of CCPs, as

46In this equation, it is to be understood that the scalar σγ is added to all coordinates. The
ω-th coordinate of EP [g(a, z)] is equal to

∑
a∈A(sf )

g(a, ω, z)P (a|ω). Similarly for EP [lnP (a)].
47Conditional choice probabilities are represented in a matrix of as many rows as (minimal,

see Appendix D) states and one column per technology/action.

57



4209177 4311429

2400406 2502706

0 5 10 15 20 0 5 10 15 20

0

2

4

6

0

2

4

6

Distance in Demographics Space

D
is

ta
nc

e 
in

 C
C

P
 S

pa
ce

Figure 17: Equilibrium continuity.

Each panel shows data for one of four randomly sampled municipalities. Each dot in a scatter-
plot corresponds to one of the other 742 municipalities that are part of the 3G counterfactuals.
The x-axis is the Euclidean distance of the demographics of the two municipalities (a vector
containing the time series of GDP per capita, population, and area). On the y-axis is the Frobe-
nius distance of the conditional choice probability matrices of the two municipalities.

desired.

Appendix G Estimates of Dynamic Parameters

Table 11 shows estimates of the dynamic parameters of the model, i.e. the entry
and technology upgrade cost parameters and the fine for non-compliance with
the regulation.

Appendix H Equilibrium Effects of Coverage Require-

ments: Policy Function Adjustments

As in the main text, here I consider moving from the situation in which only the
regulated firm responds to the regulation to a scenario with regulation. For each
municipality considered in the counterfactuals and each state of the game, I
compute the difference in upgrade probabilities. Then, focusing on unregulated
firms first, I average those differences across states of the game conditioning on
firm technology, model period, and the technology of the regulated firm. Figure
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Table 11: Dynamic Parameter Estimates

Technology Variable Year Estimate 2.5 Quantile 97.5 Quantile

Entry Area All -0.138 -0.183 -0.068
Entry Intercept All 6.142 5.669 6.424
3G Area 2014 0.572 0.498 0.650
3G Area 2015 0.382 0.271 0.463
3G Area 2016 0.442 0.337 0.525
3G Area 2017 0.548 0.439 0.638
3G Area 2018 0.425 0.301 0.522
3G Intercept 2014 0.274 -0.203 0.742
3G Intercept 2015 1.307 0.773 1.974
3G Intercept 2016 0.484 -0.006 1.132
3G Intercept 2017 -0.052 -0.650 0.638
3G Intercept 2018 -0.177 -0.816 0.546
4G Area 2014 1.082 0.993 1.222
4G Area 2015 0.593 0.544 0.699
4G Area 2016 0.362 0.282 0.426
4G Area 2017 0.182 0.110 0.239
4G Area 2018 0.030 -0.066 0.107
4G Intercept 2014 0.130 -0.218 0.270
4G Intercept 2015 0.012 -0.697 0.292
4G Intercept 2016 -1.152 -1.530 -0.684
4G Intercept 2017 -0.983 -1.329 -0.502
4G Intercept 2018 0.499 0.033 1.092

Fine All 1.510 1.358 1.740

This table displays estimates of the dynamic parameters – the entry and technology upgrade
cost parameters and the fine for non-compliance with the regulation. A combination of the
Technology, Variable, and Year columns defines a parameter in the model. For example, the
row identified by 4G, Area, and 2016 indicates to what extent the logarithm of a municipality’s
area increases the cost of introducing 4G technology. The Estimate column shows the point
estimate and the final two columns together define a 95% confidence interval for the respective
parameter. The confidence interval is calculated by bootstrap, which is performed at the mu-
nicipality level.
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Figure 18: Equilibrium Effects: Changes in the Policy Functions of Unregulated
Firms.

Difference between upgrade probabilities in the equilibrium with regulation and when only the
regulated firm responds to the regulation.

18 shows the results.
We see that the move to the equilibrium with regulation leads to reductions

in the upgrade probabilities of unregulated firms. This is due to the the antici-
pated tougher competition in the market following the entry or technology up-
grade by the regulated firm. These effects are more pronounced as time passes.
As the regulation deadline approaches, the upgrade by the regulated firm and
the consequent reduction in flow profits become imminent, implying a stronger
reduction in unregulated firms’ incentives to enter or upgrade. The effect of the
move to equilibrium is also stronger in those states where the regulated firm is
out of the market. In those situations, compliance with the regulation will lead
to a larger decrease in unregulated firms’ flow profits relative to the case where
the regulated firm is already active. Finally, the largest effects are observed in
the behavior of “weak” incumbents – i.e., those with 2G technology. Those are
the ones that experience the largest reductions in flow profits from the added
competition, as inactive firms are only affected if they enter the market and
incumbents with advanced technologies are in a stronger position to compete
with the regulated firm.48

48The figure also includes a plot for when the unregulated firms have 4G technology as a
sanity check. The changes in probability in that case are zero by construction – firms have no
decision to make once they have 4G technology.
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Figure 19: Equilibrium Effects: Changes in the Policy Functions of Regulated
Firms.

Difference between upgrade probabilities in the equilibrium with regulation and when only the
regulated firm responds to the regulation.

Figure 19 shows analogous results for the regulated firms, conditioning on
firm technology, model period, and the number of competitors in the market.
Upgrade probabilities of regulated firms are lower in the equilibrium with reg-
ulation than after their unilateral response to the regulation. Entry and tech-
nology upgrade have value as deterrents of upgrades by competitors. As the
regulation decreases the probability of such upgrades, it reduces this deterrence
incentive, leading to the results in figure 19. These effects are (mostly) increas-
ing over time due to the similar pattern shown in 18. Finally, note that the
reductions in regulated firms’ upgrade probabilities are decreasing in competi-
tion. This is in line with the previous discussion, as deterrence incentives are
less relevant the more competition there is in the market.
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